File size: 11,898 Bytes
52d68d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import torch
import torch.nn as nn
from accelerate.logging import get_logger

from .embedder import CameraEmbedder
from .transformer import TransformerDecoder
from .rendering.synthesizer import TriplaneSynthesizer
from .utils import zero_module
import loratorch as lora
from .swin_transformer import CrossAttentionLayer

logger = get_logger(__name__)


class ModelLRM(nn.Module):
    """
    Full model of the basic single-view large reconstruction model.
    """
    def __init__(self, camera_embed_dim: int, rendering_samples_per_ray: int,
                 transformer_dim: int, transformer_layers: int, transformer_heads: int,
                 triplane_low_res: int, triplane_high_res: int, triplane_dim: int,
                 encoder_freeze: bool = True, encoder_type: str = 'dino',
                 encoder_model_name: str = 'facebook/dino-vitb16', encoder_feat_dim: int = 768,
                 model_lora_rank: int = 0, conv_fuse=False,
                 swin_ca_fuse=False, ca_dim=32, ca_depth=2, ca_num_heads=8, ca_window_size=2):
        super().__init__()
        
        # attributes
        self.encoder_feat_dim = encoder_feat_dim
        self.camera_embed_dim = camera_embed_dim
        self.triplane_low_res = triplane_low_res
        self.triplane_high_res = triplane_high_res
        self.triplane_dim = triplane_dim

        self.conv_fuse = conv_fuse
        self.swin_ca_fuse = swin_ca_fuse

        # modules
        self.encoder = self._encoder_fn(encoder_type)(
            model_name=encoder_model_name,
            freeze=encoder_freeze,
        )
        self.camera_embedder = CameraEmbedder(
            raw_dim=12+4, embed_dim=camera_embed_dim,
        )
        # initialize pos_embed with 1/sqrt(dim) * N(0, 1)
        self.pos_embed = nn.Parameter(torch.randn(1, 3*triplane_low_res**2, transformer_dim) * (1. / transformer_dim) ** 0.5)
        if model_lora_rank > 0:
            self.transformer = TransformerDecoder(
                block_type='cond_mod',
                num_layers=transformer_layers, num_heads=transformer_heads,
                inner_dim=transformer_dim, cond_dim=encoder_feat_dim, mod_dim=camera_embed_dim,
                lora_rank=model_lora_rank
            )
            lora.mark_only_lora_as_trainable(self.transformer)
        else:
            self.transformer = TransformerDecoder(
                block_type='cond_mod',
                num_layers=transformer_layers, num_heads=transformer_heads,
                inner_dim=transformer_dim, cond_dim=encoder_feat_dim, mod_dim=camera_embed_dim,
            )
        self.upsampler = nn.ConvTranspose2d(transformer_dim, triplane_dim, kernel_size=2, stride=2, padding=0)
        self.synthesizer = TriplaneSynthesizer(
            triplane_dim=triplane_dim, samples_per_ray=rendering_samples_per_ray,
        )

        if model_lora_rank > 0:
            if self.conv_fuse:
                # self.front_back_conv = nn.Conv2d(in_channels=triplane_dim*2, out_channels=triplane_dim, kernel_size=(3, 3), stride=(1, 1), padding=1)
                # zero_module(self.front_back_conv)
                self.front_back_conv = nn.ModuleList([
                        nn.Conv2d(in_channels=triplane_dim*2, out_channels=triplane_dim*4, kernel_size=(3, 3), stride=(1, 1), padding=1),
                        nn.LayerNorm([triplane_dim*4, triplane_high_res, triplane_high_res]),  # Using Layer Normalization
                        nn.GELU(),  # Using GELU activation
                        nn.Conv2d(in_channels=triplane_dim*4, out_channels=triplane_dim*4, kernel_size=(3, 3), stride=(1, 1), padding=1),
                        nn.LayerNorm([triplane_dim*4, triplane_high_res, triplane_high_res]),  # Using Layer Normalization
                        nn.GELU(),  # Using GELU activation
                        nn.Conv2d(in_channels=triplane_dim*4, out_channels=triplane_dim, kernel_size=(3, 3), stride=(1, 1), padding=1)
                    ])
                self.freeze_modules(encoder=True, camera_embedder=True, 
                                        pos_embed=False, transformer=False, upsampler=False,
                                        synthesizer=False) 
            elif self.swin_ca_fuse:
                self.swin_cross_attention = CrossAttentionLayer(dim=ca_dim, depth=ca_depth, num_heads=ca_num_heads, window_size=ca_window_size)
                self.freeze_modules(encoder=True, camera_embedder=True, 
                                        pos_embed=False, transformer=False, upsampler=False,
                                        synthesizer=False)
            else:
                raise ValueError("You need to specify a method for fusing the front and the back.")


    def freeze_modules(self, encoder=False, camera_embedder=False, 
                        pos_embed=False, transformer=False, upsampler=False, 
                        synthesizer=False):
        """
        Freeze specified modules
        """
        if encoder:
            for param in self.encoder.parameters():
                param.requires_grad = False
        if camera_embedder:
            for param in self.camera_embedder.parameters():
                param.requires_grad = False
        if pos_embed:
            for param in self.pos_embed.parameters():
                param.requires_grad = False
        if transformer:
            for param in self.transformer.parameters():
                param.requires_grad = False
        if upsampler:
            for param in self.upsampler.parameters():
                param.requires_grad = False
        if synthesizer:
            for param in self.synthesizer.parameters():
                param.requires_grad = False

    @staticmethod
    def _encoder_fn(encoder_type: str):
        encoder_type = encoder_type.lower()
        assert encoder_type in ['dino', 'dinov2'], "Unsupported encoder type"
        if encoder_type == 'dino':
            from .encoders.dino_wrapper import DinoWrapper
            logger.info("Using DINO as the encoder")
            return DinoWrapper
        elif encoder_type == 'dinov2':
            from .encoders.dinov2_wrapper import Dinov2Wrapper
            logger.info("Using DINOv2 as the encoder")
            return Dinov2Wrapper

    def forward_transformer(self, image_feats, camera_embeddings):
        assert image_feats.shape[0] == camera_embeddings.shape[0], \
            "Batch size mismatch for image_feats and camera_embeddings!"
        N = image_feats.shape[0]
        x = self.pos_embed.repeat(N, 1, 1)  # [N, L, D]
        x = self.transformer(
            x,
            cond=image_feats,
            mod=camera_embeddings,
        )
        return x

    def reshape_upsample(self, tokens):
        N = tokens.shape[0]
        H = W = self.triplane_low_res
        x = tokens.view(N, 3, H, W, -1)
        x = torch.einsum('nihwd->indhw', x)  # [3, N, D, H, W]
        x = x.contiguous().view(3*N, -1, H, W)  # [3*N, D, H, W]
        x = self.upsampler(x)  # [3*N, D', H', W']
        x = x.view(3, N, *x.shape[-3:])  # [3, N, D', H', W']
        x = torch.einsum('indhw->nidhw', x)  # [N, 3, D', H', W']
        x = x.contiguous()
        return x

    @torch.compile
    def forward_planes(self, image, camera):
        # image: [N, C_img, H_img, W_img]
        # camera: [N, D_cam_raw]
        N = image.shape[0]

        # encode image
        image_feats = self.encoder(image)
        assert image_feats.shape[-1] == self.encoder_feat_dim, \
            f"Feature dimension mismatch: {image_feats.shape[-1]} vs {self.encoder_feat_dim}"

        # embed camera
        camera_embeddings = self.camera_embedder(camera)
        assert camera_embeddings.shape[-1] == self.camera_embed_dim, \
            f"Feature dimension mismatch: {camera_embeddings.shape[-1]} vs {self.camera_embed_dim}"

        # transformer generating planes
        tokens = self.forward_transformer(image_feats, camera_embeddings)
        planes = self.reshape_upsample(tokens)
        assert planes.shape[0] == N, "Batch size mismatch for planes"
        assert planes.shape[1] == 3, "Planes should have 3 channels"

        return planes

    def forward(self, image, source_camera, render_cameras, render_anchors, render_resolutions, render_bg_colors, render_region_size: int,
                image_back=None,):
        # image: [N, C_img, H_img, W_img]
        # source_camera: [N, D_cam_raw]
        # render_cameras: [N, M, D_cam_render]
        # render_anchors: [N, M, 2]
        # render_resolutions: [N, M, 1]
        # render_bg_colors: [N, M, 1]
        # render_region_size: int
        assert image.shape[0] == source_camera.shape[0], "Batch size mismatch for image and source_camera"
        assert image.shape[0] == render_cameras.shape[0], "Batch size mismatch for image and render_cameras"
        assert image.shape[0] == render_anchors.shape[0], "Batch size mismatch for image and render_anchors"
        assert image.shape[0] == render_bg_colors.shape[0], "Batch size mismatch for image and render_bg_colors"
        N, M = render_cameras.shape[:2]

        if image_back is not None:
            front_planes = self.forward_planes(image, source_camera)
            back_planes = self.forward_planes(image_back, source_camera)

            # XY Plane
            back_planes[:, 0, :, :, :] = torch.flip(back_planes[:, 0, :, :, :], dims=[-2, -1])
            # XZ Plane
            back_planes[:, 1, :, :, :] = torch.flip(back_planes[:, 1, :, :, :], dims=[-1])
            # YZ Plane
            back_planes[:, 2, :, :, :] = torch.flip(back_planes[:, 2, :, :, :], dims=[-2])
        
            # To fuse the front planes and the back planes
            bs, num_planes, channels, height, width = front_planes.shape
            if self.conv_fuse:
                planes = torch.cat((front_planes, back_planes), dim=2)
                planes = planes.reshape(-1, channels*2, height, width) 
                # Apply multiple convolutional layers
                for layer in self.front_back_conv:
                    planes = layer(planes)
                
                planes = planes.view(bs, num_planes, -1, height, width)
                # planes = self.front_back_conv(planes).view(bs, num_planes, -1, height, width)  # only one layer.
            elif self.swin_ca_fuse:
                front_planes = front_planes.reshape(bs*num_planes, channels, height*width).permute(0, 2, 1).contiguous()    # [8, 3, 32, 64, 64] -> [24, 32, 4096] -> [24, 4096, 32]
                back_planes = back_planes.reshape(bs*num_planes, channels, height*width).permute(0, 2, 1).contiguous()
                planes = self.swin_cross_attention(front_planes, back_planes, height, width)[0].permute(0, 2, 1).reshape(bs, num_planes, channels, height, width)
        else:
            planes = self.forward_planes(image, source_camera)

        # render target views
        render_results = self.synthesizer(planes, render_cameras, render_anchors, render_resolutions, render_bg_colors, render_region_size)
        assert render_results['images_rgb'].shape[0] == N, "Batch size mismatch for render_results"
        assert render_results['images_rgb'].shape[1] == M, "Number of rendered views should be consistent with render_cameras"

        return {
            'planes': planes,
            **render_results,
        }