Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -453,6 +453,34 @@ def update_scale(scale):
|
|
453 |
value_index += 1
|
454 |
|
455 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
456 |
if __name__ == "__main__":
|
457 |
|
458 |
parser = argparse.ArgumentParser()
|
@@ -480,17 +508,7 @@ if __name__ == "__main__":
|
|
480 |
torch_dtype = torch.float16
|
481 |
|
482 |
# torch_dtype = torch.float16
|
483 |
-
pipe =
|
484 |
-
pipe.vae = AutoencoderKL.from_pretrained(vae_model_id, subfolder=vae_folder, torch_dtype=torch_dtype).to(device)
|
485 |
-
pipe.load_lora_weights(
|
486 |
-
hf_hub_download(repo_id="jiaxiangc/res-adapter", subfolder=resadapter_model_name, filename="pytorch_lora_weights.safetensors"),
|
487 |
-
adapter_name="res_adapter",
|
488 |
-
) # load lora weights
|
489 |
-
pipe.set_adapters(["res_adapter"], adapter_weights=[1.0])
|
490 |
-
pipe.unet.load_state_dict(
|
491 |
-
load_file(hf_hub_download(repo_id="jiaxiangc/res-adapter", subfolder=resadapter_model_name, filename="diffusion_pytorch_model.safetensors")),
|
492 |
-
strict=False,
|
493 |
-
) # load norm weights
|
494 |
|
495 |
inverse_scheduler = DDIMInverseScheduler.from_pretrained(model_id, subfolder="scheduler")
|
496 |
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
|
|
453 |
value_index += 1
|
454 |
|
455 |
|
456 |
+
@spaces.GPU()
|
457 |
+
def load_pipeline():
|
458 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
459 |
+
vae_model_id = "runwayml/stable-diffusion-v1-5"
|
460 |
+
vae_folder = "vae"
|
461 |
+
guidance_scale_value = 7.5
|
462 |
+
resadapter_model_name = "resadapter_v2_sd1.5"
|
463 |
+
res_range_min = 128
|
464 |
+
res_range_max = 1024
|
465 |
+
|
466 |
+
|
467 |
+
torch_dtype = torch.float16
|
468 |
+
|
469 |
+
# torch_dtype = torch.float16
|
470 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
|
471 |
+
pipe.vae = AutoencoderKL.from_pretrained(vae_model_id, subfolder=vae_folder, torch_dtype=torch_dtype).to(device)
|
472 |
+
pipe.load_lora_weights(
|
473 |
+
hf_hub_download(repo_id="jiaxiangc/res-adapter", subfolder=resadapter_model_name, filename="pytorch_lora_weights.safetensors"),
|
474 |
+
adapter_name="res_adapter",
|
475 |
+
) # load lora weights
|
476 |
+
pipe.set_adapters(["res_adapter"], adapter_weights=[1.0])
|
477 |
+
pipe.unet.load_state_dict(
|
478 |
+
load_file(hf_hub_download(repo_id="jiaxiangc/res-adapter", subfolder=resadapter_model_name, filename="diffusion_pytorch_model.safetensors")),
|
479 |
+
strict=False,
|
480 |
+
) # load norm weights
|
481 |
+
|
482 |
+
return pipe
|
483 |
+
|
484 |
if __name__ == "__main__":
|
485 |
|
486 |
parser = argparse.ArgumentParser()
|
|
|
508 |
torch_dtype = torch.float16
|
509 |
|
510 |
# torch_dtype = torch.float16
|
511 |
+
pipe = load_pipeline()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
512 |
|
513 |
inverse_scheduler = DDIMInverseScheduler.from_pretrained(model_id, subfolder="scheduler")
|
514 |
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|