Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -46,6 +46,10 @@ signal_value = 2.0
|
|
46 |
blur_value = None
|
47 |
allowed_res_max = 1.0
|
48 |
|
|
|
|
|
|
|
|
|
49 |
|
50 |
def weight_population(layer_type, resolution, depth, value):
|
51 |
# Check if layer_type exists, if not, create it
|
@@ -100,9 +104,9 @@ def reconstruct(input_img, caption):
|
|
100 |
])
|
101 |
|
102 |
if torch_dtype == torch.float16:
|
103 |
-
loaded_image = transform(img).half().to(
|
104 |
else:
|
105 |
-
loaded_image = transform(img).to(
|
106 |
|
107 |
if loaded_image.shape[1] == 4:
|
108 |
loaded_image = loaded_image[:,:3,:,:]
|
@@ -114,7 +118,7 @@ def reconstruct(input_img, caption):
|
|
114 |
|
115 |
# notice we disabled the CFG here by setting guidance scale as 1
|
116 |
guidance_scale = 1.0
|
117 |
-
inverse_scheduler.set_timesteps(num_inference_steps, device=
|
118 |
timesteps = inverse_scheduler.timesteps
|
119 |
|
120 |
latents = real_image_latents
|
@@ -148,7 +152,7 @@ def reconstruct(input_img, caption):
|
|
148 |
real_image_initial_latents = latents
|
149 |
|
150 |
guidance_scale = guidance_scale_value
|
151 |
-
scheduler.set_timesteps(num_inference_steps, device=
|
152 |
timesteps = scheduler.timesteps
|
153 |
|
154 |
def adjust_latent(pipe, step, timestep, callback_kwargs):
|
@@ -319,7 +323,7 @@ def apply_prompt(meta_data, new_prompt):
|
|
319 |
inference_steps = len(inversed_latents)
|
320 |
|
321 |
guidance_scale = guidance_scale_value
|
322 |
-
scheduler.set_timesteps(inference_steps, device=
|
323 |
timesteps = scheduler.timesteps
|
324 |
|
325 |
initial_latents = torch.cat([real_image_initial_latents] * 2)
|
@@ -470,8 +474,8 @@ if __name__ == "__main__":
|
|
470 |
torch_dtype = torch.float16
|
471 |
|
472 |
# torch_dtype = torch.float16
|
473 |
-
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(
|
474 |
-
pipe.vae = AutoencoderKL.from_pretrained(vae_model_id, subfolder=vae_folder, torch_dtype=torch_dtype).to(
|
475 |
pipe.load_lora_weights(
|
476 |
hf_hub_download(repo_id="jiaxiangc/res-adapter", subfolder=resadapter_model_name, filename="pytorch_lora_weights.safetensors"),
|
477 |
adapter_name="res_adapter",
|
|
|
46 |
blur_value = None
|
47 |
allowed_res_max = 1.0
|
48 |
|
49 |
+
# Device configuration
|
50 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
51 |
+
print(f"Using device: {device}")
|
52 |
+
|
53 |
|
54 |
def weight_population(layer_type, resolution, depth, value):
|
55 |
# Check if layer_type exists, if not, create it
|
|
|
104 |
])
|
105 |
|
106 |
if torch_dtype == torch.float16:
|
107 |
+
loaded_image = transform(img).half().to(device).unsqueeze(0)
|
108 |
else:
|
109 |
+
loaded_image = transform(img).to(device).unsqueeze(0)
|
110 |
|
111 |
if loaded_image.shape[1] == 4:
|
112 |
loaded_image = loaded_image[:,:3,:,:]
|
|
|
118 |
|
119 |
# notice we disabled the CFG here by setting guidance scale as 1
|
120 |
guidance_scale = 1.0
|
121 |
+
inverse_scheduler.set_timesteps(num_inference_steps, device=device)
|
122 |
timesteps = inverse_scheduler.timesteps
|
123 |
|
124 |
latents = real_image_latents
|
|
|
152 |
real_image_initial_latents = latents
|
153 |
|
154 |
guidance_scale = guidance_scale_value
|
155 |
+
scheduler.set_timesteps(num_inference_steps, device=device)
|
156 |
timesteps = scheduler.timesteps
|
157 |
|
158 |
def adjust_latent(pipe, step, timestep, callback_kwargs):
|
|
|
323 |
inference_steps = len(inversed_latents)
|
324 |
|
325 |
guidance_scale = guidance_scale_value
|
326 |
+
scheduler.set_timesteps(inference_steps, device=device)
|
327 |
timesteps = scheduler.timesteps
|
328 |
|
329 |
initial_latents = torch.cat([real_image_initial_latents] * 2)
|
|
|
474 |
torch_dtype = torch.float16
|
475 |
|
476 |
# torch_dtype = torch.float16
|
477 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
|
478 |
+
pipe.vae = AutoencoderKL.from_pretrained(vae_model_id, subfolder=vae_folder, torch_dtype=torch_dtype).to(device)
|
479 |
pipe.load_lora_weights(
|
480 |
hf_hub_download(repo_id="jiaxiangc/res-adapter", subfolder=resadapter_model_name, filename="pytorch_lora_weights.safetensors"),
|
481 |
adapter_name="res_adapter",
|