StableEnergy / app.py
alexnasa's picture
Update app.py
a9ae8e0 verified
raw
history blame
10.8 kB
import warnings
from diffusers import StableDiffusionPipeline
import torch
import spaces
from typing import Optional
from tqdm import tqdm
import math
import torch.nn.functional as F
from diffusers import DDIMScheduler
import numpy as np
import gradio as gr
model_id = "stabilityai/stable-diffusion-2-1-base"
def gaussian_blur_2d(img, kernel_size, sigma):
height = img.shape[-1]
kernel_size = min(kernel_size, height - (height % 2 - 1))
ksize_half = (kernel_size - 1) * 0.5
x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
pdf = torch.exp(-0.5 * (x / sigma).pow(2))
x_kernel = pdf / pdf.sum()
x_kernel = x_kernel.to(device=img.device, dtype=img.dtype)
kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :])
kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1])
padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2]
img = F.pad(img, padding, mode="reflect")
img = F.conv2d(img, kernel2d, groups=img.shape[-3])
return img
blur_inf = '∞'
def contextual_forward(self, blur_sigma = 0.0):
self.blur_sigma = blur_sigma
def forward_modified(
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
dimension_squared = hidden_states.shape[1]
is_cross = not encoder_hidden_states is None
residual = hidden_states
if self.spatial_norm is not None:
hidden_states = self.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, self.heads, -1, attention_mask.shape[-1])
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif self.norm_cross:
encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states)
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // self.heads
query = query.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
height = width = math.isqrt(query.shape[2])
if not is_cross and (self.blur_sigma == blur_inf or self.blur_sigma > 0):
# based of empirical findings
# 8x8 and 16x16
allowed_res = [16, 8]
if (dimension_squared == allowed_res[0] * allowed_res[0] or dimension_squared == allowed_res[1] * allowed_res[1]):
query_uncond, query_org, query_ptb = query.chunk(3)
query_ptb = query_ptb.permute(0, 1, 3, 2).view(batch_size//3, self.heads * head_dim, height, width)
if self.blur_sigma != blur_inf:
kernel_size = math.ceil(6 * self.blur_sigma) + 1 - math.ceil(6 * self.blur_sigma) % 2
query_ptb = gaussian_blur_2d(query_ptb, kernel_size, self.blur_sigma)
else:
query_ptb[:] = query_ptb.mean(dim=(-2, -1), keepdim=True)
query_ptb = query_ptb.view(batch_size//3, self.heads, head_dim, height * width).permute(0, 1, 3, 2)
query = torch.cat((query_uncond, query_org, query_ptb), dim=0)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False,
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if self.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / self.rescale_output_factor
return hidden_states
return forward_modified
def apply_seg(unet, child = None, blur_sigma=1.0):
if child == None:
children = unet.named_children()
for child in children:
apply_seg(unet, child[1], blur_sigma=blur_sigma)
else:
if child.__class__.__name__ == 'Attention':
child.forward = contextual_forward(child, blur_sigma=blur_sigma)
elif hasattr(child, 'children'):
for sub_child in child.children():
apply_seg(unet, sub_child, blur_sigma=blur_sigma)
@spaces.GPU
def sample(prompt, cfg = 7.5, blur_sigma = blur_inf, seed=123, steps=50, signal_scale = 1.0):
pipe = StableDiffusionPipeline.from_pretrained(model_id)
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = pipe.to("cuda")
guidance_scale = cfg
num_inference_steps = steps
scheduler.set_timesteps(num_inference_steps, device="cuda")
timesteps = scheduler.timesteps
shape = (1, pipe.unet.in_channels, pipe.unet.config.sample_size, pipe.unet.config.sample_size)
latents = torch.randn(shape, generator=torch.Generator(device="cuda").manual_seed(seed), device="cuda").to("cuda")
prompt_cond = pipe.encode_prompt(prompt=prompt, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
prompt_uncond = pipe.encode_prompt(prompt="", device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
prompt_embeds_combined = torch.cat([prompt_uncond, prompt_cond, prompt_cond])
with torch.no_grad():
apply_seg(pipe.unet, blur_sigma=blur_sigma)
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), desc="Inference steps"):
latent_model_input = torch.cat([latents] * 3)
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds_combined,
cross_attention_kwargs=None,
return_dict=False,
)[0]
noise_pred_uncond, noise_pred_cond, noise_pred_cond_perturb = noise_pred.chunk(3)
# Classfier Free Guidance
noise_cfg = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
# Smoothed Energy Guidance
noise_pred = noise_cfg + signal_scale * (noise_pred_cond - noise_pred_cond_perturb)
latents = scheduler.step(noise_pred, t, latents, return_dict=False)[0]
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
image_cpu = image.squeeze(0).float().permute(1, 2, 0).detach().cpu()
image_cpu = (image_cpu / 2 + 0.5).clamp(0, 1)
return (image_cpu, cfg, blur_sigma)
def gradio_generate(prompt: str, cfg: float, blur_sigma: float):
# run your sample() and get back a torch.Tensor in [0–1]
image_tensor, _, _ = sample(prompt, cfg=cfg, blur_sigma=blur_sigma, seed=123, steps=50, signal_scale=1.0)
# to HxWxC uint8
image_np = (image_tensor.cpu().numpy() * 255).round().astype(np.uint8)
return image_np
examples = [
"A realistic photo of a woman, cyberpunk outfit, neon lighting, wall background",
"a painting of a bouquet of flowers, likely pansies, arranged in a vase. The painting style appears to be impressionistic, characterized by visible brushstrokes and a focus on capturing the overall impression rather than fine detail",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
]
css="""
#col-container {
margin: 0 auto;
max-width: 580px;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<div style="text-align: center;">
<h1>StableEnergy</h1>
<p style="font-size:16px;">Smoothed Energy Guidance in Stable Diffusion 2.1 </p>
</div>
<br>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://x.com/alexandernasa" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=alexnasa"></a> &ensp;
<a href="https://x.com/OutofAi" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=OutofAi"></a>
</div>
"""
)
with gr.Column(elem_id="col-container"):
prompt_in = gr.Textbox(
label="Prompt",
placeholder="Type your prompt here...",
lines=2
)
with gr.Row():
image_out_1 = gr.Image(type="numpy", label="Blur Οƒ = 0")
image_out_2 = gr.Image(type="numpy", label="Blur Οƒ = 10")
with gr.Row():
cfg_slider = gr.Slider(
minimum=1.0, maximum=7.5, value=3.0, step=0.1,
label="CFG Scale"
)
blur_slider = gr.Slider(
minimum=5.0, maximum=100.0, value=10.0, step=0.1,
label="Blur Οƒ"
)
generate_btn = gr.Button("Generate")
gr.Examples(
examples = examples,
inputs = [prompt_in]
)
# wire up
generate_btn.click(
fn=gradio_generate,
inputs=[prompt_in, cfg_slider, gr.State(0)],
outputs=image_out_1
).then(fn=gradio_generate,
inputs=[prompt_in, cfg_slider, blur_slider],
outputs=image_out_2
).then(
lambda b: gr.update(label=f"Blur Οƒ = {b}"),
inputs=[blur_slider],
outputs=[image_out_2]
)
demo.launch()