File size: 11,004 Bytes
89ec09e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c2f20c
89ec09e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2adefde
89ec09e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb69cc1
1b693bf
 
89ec09e
 
 
 
 
 
 
 
 
 
d7b879d
 
 
 
 
 
 
 
8a6f42f
313f84a
 
482725f
d7b879d
 
 
 
 
 
 
5ec348a
 
 
 
89ec09e
d7b879d
5ec348a
 
 
d7b879d
5ec348a
 
 
db2b617
5ec348a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ae8e0
 
5ec348a
 
 
89ec09e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import warnings
from diffusers import StableDiffusionPipeline
import torch
import spaces
from typing import Optional
from tqdm import tqdm
import math
import torch.nn.functional as F
from diffusers import DDIMScheduler
import numpy as np 
import gradio as gr

model_id = "stabilityai/stable-diffusion-2-1-base"



def gaussian_blur_2d(img, kernel_size, sigma):
    height = img.shape[-1]
    kernel_size = min(kernel_size, height - (height % 2 - 1))
    ksize_half = (kernel_size - 1) * 0.5

    x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)

    pdf = torch.exp(-0.5 * (x / sigma).pow(2))

    x_kernel = pdf / pdf.sum()
    x_kernel = x_kernel.to(device=img.device, dtype=img.dtype)

    kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :])
    kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1])

    padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2]
    img = F.pad(img, padding, mode="reflect")
    img = F.conv2d(img, kernel2d, groups=img.shape[-3])

    return img

blur_inf = '∞'

def contextual_forward(self, blur_sigma = 0.0):

    self.blur_sigma = blur_sigma

    def forward_modified(
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
          
          dimension_squared = hidden_states.shape[1]

          is_cross = not encoder_hidden_states is None

          residual = hidden_states
          if self.spatial_norm is not None:
              hidden_states = self.spatial_norm(hidden_states, temb)

          input_ndim = hidden_states.ndim

          if input_ndim == 4:
              batch_size, channel, height, width = hidden_states.shape
              hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

          batch_size, sequence_length, _ = (
              hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
          )

          if attention_mask is not None:
              attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size)
              # scaled_dot_product_attention expects attention_mask shape to be
              # (batch, heads, source_length, target_length)
              attention_mask = attention_mask.view(batch_size, self.heads, -1, attention_mask.shape[-1])

          if self.group_norm is not None:
              hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

          query = self.to_q(hidden_states)

          if encoder_hidden_states is None:
              encoder_hidden_states = hidden_states
          elif self.norm_cross:
              encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states)

          key = self.to_k(encoder_hidden_states)
          value = self.to_v(encoder_hidden_states)

          inner_dim = key.shape[-1]
          head_dim = inner_dim // self.heads

          query = query.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)

          key = key.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
          value = value.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)

          height = width = math.isqrt(query.shape[2])
          

          if not is_cross and (self.blur_sigma == blur_inf or self.blur_sigma > 0):

            # based of empirical findings
            # 8x8 and 16x16
            allowed_res = [16, 8]

            if (dimension_squared == allowed_res[0] * allowed_res[0] or dimension_squared == allowed_res[1] * allowed_res[1]):

                query_uncond, query_org, query_ptb = query.chunk(3)
                query_ptb = query_ptb.permute(0, 1, 3, 2).view(batch_size//3, self.heads * head_dim, height, width)

                if self.blur_sigma != blur_inf:
                    kernel_size = math.ceil(6 * self.blur_sigma) + 1 - math.ceil(6 * self.blur_sigma) % 2
                    query_ptb = gaussian_blur_2d(query_ptb, kernel_size, self.blur_sigma)
                else:
                    query_ptb[:] = query_ptb.mean(dim=(-2, -1), keepdim=True)

                query_ptb = query_ptb.view(batch_size//3, self.heads, head_dim, height * width).permute(0, 1, 3, 2)
                query = torch.cat((query_uncond, query_org, query_ptb), dim=0)



          hidden_states = F.scaled_dot_product_attention(
              query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False,
          )

          hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.heads * head_dim)
          hidden_states = hidden_states.to(query.dtype)

          # linear proj
          hidden_states = self.to_out[0](hidden_states)
          # dropout
          hidden_states = self.to_out[1](hidden_states)

          if input_ndim == 4:
              hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

          if self.residual_connection:
              hidden_states = hidden_states + residual

          hidden_states = hidden_states / self.rescale_output_factor

          return hidden_states

    return forward_modified

def apply_seg(unet, child = None, blur_sigma=1.0):
    if child == None:
        children = unet.named_children()
        for child in children:
            apply_seg(unet, child[1], blur_sigma=blur_sigma)
    else:
        if child.__class__.__name__ == 'Attention':
            child.forward = contextual_forward(child, blur_sigma=blur_sigma)
        elif hasattr(child, 'children'):
            for sub_child in child.children():
                apply_seg(unet, sub_child, blur_sigma=blur_sigma)

@spaces.GPU
def sample(prompt, cfg = 7.5, blur_sigma = blur_inf, seed=123, steps=50, signal_scale = 1.0):

  pipe = StableDiffusionPipeline.from_pretrained(model_id)

  scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")

  pipe = pipe.to("cuda")

  guidance_scale = cfg
  num_inference_steps = steps
  scheduler.set_timesteps(num_inference_steps, device="cuda")
  timesteps = scheduler.timesteps

  shape = (1, pipe.unet.in_channels, pipe.unet.config.sample_size, pipe.unet.config.sample_size)
  latents = torch.randn(shape, generator=torch.Generator(device="cuda").manual_seed(seed), device="cuda").to("cuda")

  prompt_cond = pipe.encode_prompt(prompt=prompt, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
  prompt_uncond = pipe.encode_prompt(prompt="", device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]

  prompt_embeds_combined = torch.cat([prompt_uncond, prompt_cond, prompt_cond])

  with torch.no_grad():

    apply_seg(pipe.unet, blur_sigma=blur_sigma)

    for i, t in tqdm(enumerate(timesteps), total=len(timesteps), desc="Inference steps"):

      latent_model_input = torch.cat([latents] * 3)

      noise_pred = pipe.unet(
          latent_model_input,
          t,
          encoder_hidden_states=prompt_embeds_combined,
          cross_attention_kwargs=None,
          return_dict=False,
      )[0]

      noise_pred_uncond, noise_pred_cond, noise_pred_cond_perturb = noise_pred.chunk(3)

      # Classfier Free Guidance
      noise_cfg = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)

      # Smoothed Energy Guidance
      noise_pred = noise_cfg + signal_scale * (noise_pred_cond - noise_pred_cond_perturb)

      latents = scheduler.step(noise_pred, t, latents, return_dict=False)[0]

    image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
    image_cpu = image.squeeze(0).float().permute(1, 2, 0).detach().cpu()
    image_cpu = (image_cpu / 2 + 0.5).clamp(0, 1)

    return (image_cpu, cfg, blur_sigma)


def gradio_generate(prompt: str, cfg: float, blur_sigma: float):
    # run your sample() and get back a torch.Tensor in [0–1]
    image_tensor, _, _ = sample(prompt, cfg=cfg, blur_sigma=blur_sigma, seed=123, steps=50, signal_scale=1.0)
    # to HxWxC uint8
    image_np = (image_tensor.cpu().numpy() * 255).round().astype(np.uint8)
    return image_np

examples = [
    "A realistic photo of a woman, cyberpunk outfit, neon lighting, wall background",
    "a painting of a bouquet of flowers, likely pansies, arranged in a vase. The painting style appears to be impressionistic, characterized by visible brushstrokes and a focus on capturing the overall impression rather than fine detail",
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 580px;
}
"""

with gr.Blocks(css=css) as demo:

    gr.HTML(
        """
            <div style="text-align: center;">
                <h1>StableEnergy</h1>
                <p style="font-size:16px;">Smoothed Energy Guidance in Stable Diffusion 2.1 </p>
            </div>
            <br>
            <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
                <a href="https://github.com/OutofAi/StableEnergy">
                    <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
                </a> &ensp;
                <a href="https://x.com/alexandernasa" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=alexnasa"></a> &ensp;
                <a href="https://x.com/OutofAi" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=OutofAi"></a>
            </div>
            """
    )
    
    with gr.Column(elem_id="col-container"):
        prompt_in = gr.Textbox(
            label="Prompt",
            placeholder="Type your prompt here...",
            lines=2
        )
    
        with gr.Row():
            image_out_1 = gr.Image(type="numpy", label="Blur Οƒ = 0")
            image_out_2 = gr.Image(type="numpy", label="Blur Οƒ = 10")
    
        
        with gr.Row():
            cfg_slider = gr.Slider(
                minimum=1.0, maximum=7.5, value=3.0, step=0.1,
                label="CFG Scale"
            )
            blur_slider = gr.Slider(
                minimum=5.0, maximum=100.0, value=10.0, step=0.1,
                label="Blur Οƒ"
            )
        
        generate_btn = gr.Button("Generate")
        
        gr.Examples(
                examples = examples,
                inputs = [prompt_in]
            )
        
        # wire up
        generate_btn.click(
            fn=gradio_generate,
            inputs=[prompt_in, cfg_slider, gr.State(0)],
            outputs=image_out_1
        ).then(fn=gradio_generate,
            inputs=[prompt_in, cfg_slider, blur_slider],
            outputs=image_out_2
        ).then(
            lambda b: gr.update(label=f"Blur Οƒ = {b}"),
            inputs=[blur_slider],
            outputs=[image_out_2]
        )

demo.launch()