File size: 30,465 Bytes
0301e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1a5218
0301e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1a5218
0301e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
import os
import sys
sys.path.append(os.getcwd())
import yaml
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Tuple, Optional
import numpy as np
import lpips
from torchvision import transforms
from PIL import Image
from peft import LoraConfig, get_peft_model

from copy import deepcopy
from tqdm import tqdm

from diffusers import StableDiffusion3Pipeline, FluxPipeline
from lora.lora_layers import LoraInjectedLinear, LoraInjectedConv2d

def inject_lora_vae(vae, lora_rank=4, init_lora_weights="gaussian", verbose=False):
    """
    Inject LoRA into the VAE's encoder
    """
    vae.requires_grad_(False)
    vae.train() 

    # Identify modules to LoRA-ify in the encoder
    l_grep = ["conv1", "conv2", "conv_in", "conv_shortcut", 
              "conv", "conv_out", "to_k", "to_q", "to_v", "to_out.0"]
    l_target_modules_encoder = []
    for n, p in vae.named_parameters():
        if "bias" in n or "norm" in n:
            continue
        for pattern in l_grep:
            if (pattern in n) and ("encoder" in n):
                l_target_modules_encoder.append(n.replace(".weight", ""))
            elif ("quant_conv" in n) and ("post_quant_conv" not in n):
                l_target_modules_encoder.append(n.replace(".weight", ""))

    if verbose:
        print("The following VAE parameters will get LoRA:")
        print(l_target_modules_encoder)

    # Create and add a LoRA adapter
    lora_conf_encoder = LoraConfig(
        r=lora_rank,
        init_lora_weights=init_lora_weights,
        target_modules=l_target_modules_encoder
    )
    
    adapter_name = "default_encoder"
    try:
        vae.add_adapter(lora_conf_encoder, adapter_name=adapter_name)
        vae.set_adapter(adapter_name)
    except ValueError as e:
        if "already exists" in str(e):
            print(f"Adapter with name {adapter_name} already exists. Skipping injection.")
        else:
            raise e

    return vae, l_target_modules_encoder

def _find_modules(model, ancestor_class=None, search_class=[nn.Linear], exclude_children_of=[LoraInjectedLinear]):
    # Get the targets we should replace all linears under
    if ancestor_class is not None:
        ancestors = (
            module
            for module in model.modules()
            if module.__class__.__name__ in ancestor_class
        )
    else:
        # this, in case you want to naively iterate over all modules.
        ancestors = [module for module in model.modules()]

    for ancestor in ancestors:
        for fullname, module in ancestor.named_modules():
            if any([isinstance(module, _class) for _class in search_class]):
                *path, name = fullname.split(".")
                parent = ancestor
                while path:
                    parent = parent.get_submodule(path.pop(0))
                if exclude_children_of and any(
                    [isinstance(parent, _class) for _class in exclude_children_of]
                ):
                    continue
                yield parent, name, module

def inject_lora(model, ancestor_class, loras=None, r:int=4, dropout_p:float=0.0, scale:float=1.0, verbose:bool=False):
    
    model.requires_grad_(False)
    model.train()
    
    names = []
    require_grad_params = []  # to be updated

    total_lora_params = 0  

    if loras is not None:
        loras = torch.load(loras, map_location=model.device, weights_only=True)
        loras = [lora.float() for lora in loras]

    for _module, name, _child_module in _find_modules(model, ancestor_class):  # SiLU + Linear Block
        weight = _child_module.weight
        bias = _child_module.bias

        if verbose:
            print(f'LoRA Injection : injecting lora into {name}')

        _tmp = LoraInjectedLinear(
            _child_module.in_features,
            _child_module.out_features,
            _child_module.bias is not None,
            r=r,
            dropout_p=dropout_p,
            scale=scale,
        )
        _tmp.linear.weight = nn.Parameter(weight.float())
        if bias is not None:
            _tmp.linear.bias = nn.Parameter(bias.float())
        
        # switch the module
        _tmp.to(device=_child_module.weight.device, dtype=torch.float) # keep as float / mixed precision
        _module._modules[name] = _tmp

        require_grad_params.append(_module._modules[name].lora_up.parameters())
        require_grad_params.append(_module._modules[name].lora_down.parameters())

        if loras != None:
            _module._modules[name].lora_up.weight = nn.Parameter(loras.pop(0))
            _module._modules[name].lora_down.weight = nn.Parameter(loras.pop(0))

        _module._modules[name].lora_up.weight.requires_grad = True
        _module._modules[name].lora_down.weight.requires_grad = True
        names.append(name)

        if verbose:
            # -------- Count LoRA parameters just added --------
            lora_up_count = sum(p.numel() for p in _tmp.lora_up.parameters())
            lora_down_count = sum(p.numel() for p in _tmp.lora_down.parameters())
            lora_total_for_this_layer = lora_up_count + lora_down_count
            total_lora_params += lora_total_for_this_layer
            print(f"  Added {lora_total_for_this_layer} params "
                  f"(lora_up={lora_up_count}, lora_down={lora_down_count})")
    
    if verbose:
        print(f"Total new LoRA parameters added: {total_lora_params}")
    
    return require_grad_params, names

def add_mp_hook(transformer):
    '''
    For mixed precision of LoRA. (i.e. keep LoRA as float and others as half)
    '''
    def pre_hook(module, input):
        return input.float()
    
    def post_hook(module, input, output):
        return output.half()

    hooks = []
    for _module, name, _child_module in _find_modules(transformer):
        if isinstance(_child_module, LoraInjectedLinear):
            hook = _child_module.lora_up.register_forward_pre_hook(pre_hook)
            hooks.append(hook)
            hook = _child_module.lora_down.register_forward_hook(post_hook)
            hooks.append(hook)
    
    return transformer, hooks

def compute_density_for_timestep_sampling(
    weighting_scheme: str, batch_size: int, logit_mean: float = 0.0, logit_std: float = 1.0, mode_scale: Optional[float] = None
):
    """
    Compute the density for sampling the timesteps when doing SD3 training.

    Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.

    SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
    """
    if weighting_scheme == "logit_normal":
        # See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
        u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
        u = torch.nn.functional.sigmoid(u)
    elif weighting_scheme == "mode":
        u = torch.rand(size=(batch_size,), device="cpu")
        u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
    else:
        u = torch.rand(size=(batch_size,), device="cpu")
    return u

def compute_loss_weighting_for_sd3(weighting_scheme: str, sigmas):
    """
    Computes loss weighting scheme for SD3 training.

    Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.

    SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
    """
    if weighting_scheme == "sigma_sqrt":
        weighting = (sigmas**-2.0).float()
    elif weighting_scheme == "cosmap":
        bot = 1 - 2 * sigmas + 2 * sigmas**2
        weighting = 2 / (math.pi * bot)
    else:
        weighting = torch.ones_like(sigmas)
    return weighting


class StableDiffusion3Base():
    def __init__(self, model_key:str='stabilityai/stable-diffusion-3-medium-diffusers', device='cuda', dtype=torch.float16):
        self.device = device
        self.dtype = dtype

        pipe = StableDiffusion3Pipeline.from_pretrained(model_key, torch_dtype=self.dtype)

        self.scheduler = pipe.scheduler

        self.tokenizer_1 = pipe.tokenizer
        self.tokenizer_2 = pipe.tokenizer_2
        self.tokenizer_3 = pipe.tokenizer_3
        self.text_enc_1 = pipe.text_encoder.to(device)
        self.text_enc_2 = pipe.text_encoder_2.to(device)
        self.text_enc_3 = pipe.text_encoder_3.to(device)

        self.vae=pipe.vae.to(device)

        self.transformer = pipe.transformer.to(device)
        self.transformer.eval()
        self.transformer.requires_grad_(False)

        self.vae_scale_factor = (
            2 ** (len(self.vae.config.block_out_channels)-1) if hasattr(self, "vae") and self.vae is not None else 8
        )

        del pipe

    def encode_prompt(self, prompt: List[str], batch_size:int=1) -> List[torch.Tensor]:
        '''
        We assume that
        1. number of tokens < max_length
        2. one prompt for one image
        '''
        # CLIP encode (used for modulation of adaLN-zero)
        # now, we have two CLIPs
        text_clip1_ids = self.tokenizer_1(prompt,
                                          padding="max_length",
                                          max_length=77,
                                          truncation=True,
                                          return_tensors='pt').input_ids
        text_clip1_emb = self.text_enc_1(text_clip1_ids.to(self.device), output_hidden_states=True)
        pool_clip1_emb = text_clip1_emb[0].to(dtype=self.dtype, device=self.device)
        text_clip1_emb = text_clip1_emb.hidden_states[-2].to(dtype=self.dtype, device=self.device)

        text_clip2_ids = self.tokenizer_2(prompt,
                                          padding="max_length",
                                          max_length=77,
                                          truncation=True,
                                          return_tensors='pt').input_ids
        text_clip2_emb = self.text_enc_2(text_clip2_ids.to(self.device), output_hidden_states=True)
        pool_clip2_emb = text_clip2_emb[0].to(dtype=self.dtype, device=self.device)
        text_clip2_emb = text_clip2_emb.hidden_states[-2].to(dtype=self.dtype, device=self.device)
        
        # T5 encode (used for text condition)
        text_t5_ids = self.tokenizer_3(prompt,
                                       padding="max_length",
                                       max_length=512,
                                       truncation=True,
                                       add_special_tokens=True,
                                       return_tensors='pt').input_ids
        text_t5_emb = self.text_enc_3(text_t5_ids.to(self.device))[0]
        text_t5_emb = text_t5_emb.to(dtype=self.dtype, device=self.device)

        # Merge
        clip_prompt_emb = torch.cat([text_clip1_emb, text_clip2_emb], dim=-1)
        clip_prompt_emb = torch.nn.functional.pad(
            clip_prompt_emb, (0, text_t5_emb.shape[-1] - clip_prompt_emb.shape[-1])
        )
        prompt_emb = torch.cat([clip_prompt_emb, text_t5_emb], dim=-2)
        pooled_prompt_emb = torch.cat([pool_clip1_emb, pool_clip2_emb], dim=-1)

        return prompt_emb, pooled_prompt_emb

    def initialize_latent(self, img_size:Tuple[int], batch_size:int=1, **kwargs):
        H, W = img_size
        lH, lW = H//self.vae_scale_factor, W//self.vae_scale_factor
        lC = self.transformer.config.in_channels
        latent_shape = (batch_size, lC, lH, lW)

        z = torch.randn(latent_shape, device=self.device, dtype=self.dtype)

        return z

    def encode(self, image: torch.Tensor) -> torch.Tensor:
        z = self.vae.encode(image).latent_dist.sample()
        z = (z-self.vae.config.shift_factor) * self.vae.config.scaling_factor
        return z
    
    def decode(self, z: torch.Tensor) -> torch.Tensor:
        z = (z/self.vae.config.scaling_factor) + self.vae.config.shift_factor
        return self.vae.decode(z, return_dict=False)[0]
    
    
class SD3Euler(StableDiffusion3Base):
    def __init__(self, model_key:str='stabilityai/stable-diffusion-3-medium-diffusers', device='cuda'):
        super().__init__(model_key=model_key, device=device)

    def inversion(self, src_img, prompts: List[str], NFE:int, cfg_scale: float=1.0, batch_size: int=1):

        # encode text prompts
        prompt_emb, pooled_emb = self.encode_prompt(prompts, batch_size)
        null_prompt_emb, null_pooled_emb = self.encode_prompt([""], batch_size)

        # initialize latent
        src_img = src_img.to(device=self.device, dtype=self.dtype)
        with torch.no_grad():
            z = self.encode(src_img)
            z0 = z.clone()

        # timesteps (default option. You can make your custom here.)
        self.scheduler.set_timesteps(NFE, device=self.device)
        timesteps = self.scheduler.timesteps
        timesteps = torch.cat([timesteps, torch.zeros(1, device=self.device)])
        timesteps = reversed(timesteps)
        sigmas = timesteps / self.scheduler.config.num_train_timesteps

        # Solve ODE
        pbar = tqdm(timesteps[:-1], total=NFE, desc='SD3 Euler Inversion')
        for i, t in enumerate(pbar):
            timestep = t.expand(z.shape[0]).to(self.device)
            pred_v = self.predict_vector(z, timestep, prompt_emb, pooled_emb)
            if cfg_scale != 1.0:
                pred_null_v = self.predict_vector(z, timestep, null_prompt_emb, null_pooled_emb)
            else:
                pred_null_v = 0.0

            sigma = sigmas[i]
            sigma_next = sigmas[i+1]

            z = z + (sigma_next - sigma) * (pred_null_v + cfg_scale * (pred_v - pred_null_v))

        return z

    def sample(self, prompts: List[str], NFE:int, img_shape: Optional[Tuple[int]]=None, cfg_scale: float=1.0, batch_size: int = 1, latent:Optional[torch.Tensor]=None):
        imgH, imgW = img_shape if img_shape is not None else (512, 512)

        # encode text prompts
        with torch.no_grad():
            prompt_emb, pooled_emb = self.encode_prompt(prompts, batch_size)
            null_prompt_emb, null_pooled_emb = self.encode_prompt([""], batch_size)

        # initialize latent
        if latent is None:
            z = self.initialize_latent((imgH, imgW), batch_size)
        else:
            z = latent

        # timesteps (default option. You can make your custom here.)
        self.scheduler.set_timesteps(NFE, device=self.device)
        timesteps = self.scheduler.timesteps
        sigmas = timesteps / self.scheduler.config.num_train_timesteps

        # Solve ODE
        pbar = tqdm(timesteps, total=NFE, desc='SD3 Euler')
        for i, t in enumerate(pbar):
            timestep = t.expand(z.shape[0]).to(self.device)
            pred_v = self.predict_vector(z, timestep, prompt_emb, pooled_emb)
            if cfg_scale != 1.0:
                pred_null_v = self.predict_vector(z, timestep, null_prompt_emb, null_pooled_emb)
            else:
                pred_null_v = 0.0

            sigma = sigmas[i]
            sigma_next = sigmas[i+1] if i+1 < NFE else 0.0

            z = z + (sigma_next - sigma) * (pred_null_v + cfg_scale * (pred_v - pred_null_v))

        # decode
        with torch.no_grad():
            img = self.decode(z)
        return img


class OSEDiff_SD3_GEN(torch.nn.Module):
    def __init__(self, args, base_model):
        super().__init__()
        
        self.args = args
        self.model = base_model
        
        # Add lora to transformer
        print('Adding Lora to OSEDiff_SD3_GEN')
        self.transformer_gen = copy.deepcopy(self.model.transformer)
        self.transformer_gen.to('cuda')
        # self.transformer_gen = self.transformer_gen.float()
        
        self.transformer_gen.requires_grad_(False)
        self.transformer_gen.train()
        self.transformer_gen, hooks = add_mp_hook(self.transformer_gen)
        self.hooks = hooks

        lora_params, _ = inject_lora(self.transformer_gen, {"AdaLayerNormZero"}, r=args.lora_rank, verbose=True)
        # self.lora_params = lora_params
        for name, param in self.transformer_gen.named_parameters():
            if "lora_" in name:
                param.requires_grad = True   # LoRA up/down
            else:
                param.requires_grad = False  # everything else
        
        # Insert LoRA into VAE
        print("Adding Lora to VAE")
        self.model.vae, self.lora_vae_modules_encoder = inject_lora_vae(self.model.vae, lora_rank=args.lora_rank, verbose=True)

    def predict_vector(self, z, t, prompt_emb, pooled_emb):
        v = self.transformer_gen(hidden_states=z,
                             timestep=t,
                             pooled_projections=pooled_emb,
                             encoder_hidden_states=prompt_emb,
                             return_dict=False)[0]
        return v

    def forward(self, x_src, batch=None, args=None):
        
        z_src = self.model.encode(x_src.to(dtype=torch.float32, device=self.model.vae.device))
        z_src = z_src.to(self.transformer_gen.device)
        
        # calculate prompt_embeddings and neg_prompt_embeddings
        batch_size, _, _, _ = x_src.shape
        with torch.no_grad():
            prompt_embeds, pooled_embeds = self.model.encode_prompt(batch["prompt"], batch_size)
            neg_prompt_embeds, neg_pooled_embeds = self.model.encode_prompt(batch["neg_prompt"], batch_size)
        
        NFE = 1
        self.model.scheduler.set_timesteps(NFE, device=self.model.device)
        timesteps = self.model.scheduler.timesteps
        sigmas = timesteps / self.model.scheduler.config.num_train_timesteps
        sigmas = sigmas.to(self.transformer_gen.device)

        # Solve ODE
        i = 0
        t = timesteps[0]

        timestep = t.expand(z_src.shape[0]).to(self.transformer_gen.device)
        prompt_embeds = prompt_embeds.to(self.transformer_gen.device, dtype=torch.float32)
        pooled_embeds = pooled_embeds.to(self.transformer_gen.device, dtype=torch.float32)
        pred_v = self.predict_vector(z_src, timestep, prompt_embeds, pooled_embeds)
        pred_null_v = 0.0

        sigma = sigmas[i]
        sigma_next = sigmas[i+1] if i+1 < NFE else 0.0
        
        z_src = z_src + (sigma_next - sigma) * (pred_null_v + 1 * (pred_v - pred_null_v))
        
        output_image = self.model.decode(z_src.to(dtype=torch.float32, device=self.model.vae.device))

        return output_image, z_src, prompt_embeds, pooled_embeds


class OSEDiff_SD3_REG(torch.nn.Module):
    def __init__(self, args, base_model):
        super().__init__()
        
        self.args = args
        self.model = base_model
        self.transformer_org = self.model.transformer
        
        # Add lora to transformer
        print('Adding Lora to OSEDiff_SD3_REG')
        self.transformer_reg = copy.deepcopy(self.transformer_org)
        self.transformer_reg.to('cuda')
        
        self.transformer_reg.requires_grad_(False)
        self.transformer_reg.train()
        self.transformer_reg, hooks = add_mp_hook(self.transformer_reg)
        self.hooks = hooks
        
        lora_params, _ = inject_lora(self.transformer_reg, {"AdaLayerNormZero"}, r=args.lora_rank, verbose=True)
        for name, param in self.transformer_reg.named_parameters():
            if "lora_" in name:
                param.requires_grad = True   # LoRA up/down
            else:
                param.requires_grad = False  # everything else
        
    def predict_vector_reg(self, z, t, prompt_emb, pooled_emb):
        v = self.transformer_reg(hidden_states=z,
                             timestep=t,
                             pooled_projections=pooled_emb,
                             encoder_hidden_states=prompt_emb,
                             return_dict=False)[0]
        return v
    
    def predict_vector_org(self, z, t, prompt_emb, pooled_emb):
        v = self.transformer_org(hidden_states=z,
                             timestep=t,
                             pooled_projections=pooled_emb,
                             encoder_hidden_states=prompt_emb,
                             return_dict=False)[0]
        return v

    def distribution_matching_loss(self, z0, prompt_embeds, pooled_embeds, global_step, args):
        
        with torch.no_grad():
            device = self.transformer_reg.device
            # get timesteps and sigma
            u = compute_density_for_timestep_sampling(
                        weighting_scheme="uniform",
                        batch_size=1,
                        logit_mean=0.0,
                        logit_std=1.0,
                        mode_scale=1.29,
                    )
            
            t_idx = (u*1000).long().to(device)
            self.model.scheduler.set_timesteps(1000, device=device)
            times = self.model.scheduler.timesteps
            t = times[t_idx]
            sigma = t / 1000
            
            # get noise and xt
            z0 = z0.to(device)
            noise = torch.randn_like(z0)
            sigma = sigma.half()
            zt = (1-sigma) * z0 + sigma * noise
            
            # Get x0_prediction of transformer_reg
            v_pred_reg = self.predict_vector_reg(zt, t, prompt_embeds.to(device), pooled_embeds.to(device))
            reg_model_pred = v_pred_reg * (-sigma) + zt         # this is x0_prediction for reg
            
            # Get x0_prediction of transformer_org
            org_device = self.transformer_org.device
            v_pred_org = self.predict_vector_org(zt.to(org_device), t.to(org_device), prompt_embeds.to(org_device), pooled_embeds.to(org_device))
            org_model_pred = v_pred_org * (-sigma.to(org_device)) + zt.to(org_device)         # this is x0_prediction for org
            
            # Visualization
            if global_step % 100 == 1:
                self.vsd_visualization(z0, noise, zt, reg_model_pred, org_model_pred, global_step, args)
            
        weighting_factor = torch.abs(z0 - org_model_pred.to(device)).mean(dim=[1, 2, 3], keepdim=True)

        grad = (reg_model_pred - org_model_pred.to(device)) / weighting_factor
        loss = F.mse_loss(z0, (z0 - grad).detach())

        return loss
    
    def vsd_visualization(self, z0, noise, zt, reg_model_pred, org_model_pred, global_step, args):
        #-------- Visualization --------#
        # 1. Visualize latents, noise, zt
        z0_img = self.model.decode(z0.to(dtype=torch.float32, device=self.model.vae.device))
        ns_img = self.model.decode(noise.to(dtype=torch.float32, device=self.model.vae.device))
        zt_img = self.model.decode(zt.to(dtype=torch.float32, device=self.model.vae.device))
        
        z0_img_pil = transforms.ToPILImage()(torch.clamp(z0_img[0].cpu(), -1.0, 1.0) * 0.5 + 0.5)
        ns_img_pil = transforms.ToPILImage()(torch.clamp(ns_img[0].cpu(), -1.0, 1.0) * 0.5 + 0.5)
        zt_img_pil = transforms.ToPILImage()(torch.clamp(zt_img[0].cpu(), -1.0, 1.0) * 0.5 + 0.5)
        
        # 2. Visualize reg_img, org_img
        reg_img = self.model.decode(reg_model_pred.to(dtype=torch.float32, device=self.model.vae.device))
        org_img = self.model.decode(org_model_pred.to(dtype=torch.float32, device=self.model.vae.device))
        
        reg_img_pil = transforms.ToPILImage()(torch.clamp(reg_img[0].cpu(), -1.0, 1.0) * 0.5 + 0.5)
        org_img_pil = transforms.ToPILImage()(torch.clamp(org_img[0].cpu(), -1.0, 1.0) * 0.5 + 0.5)
        
        # Concatenate images side by side
        w, h = z0_img_pil.width, z0_img_pil.height
        combined_image = Image.new('RGB', (w*5, h))
        combined_image.paste(z0_img_pil, (0, 0))
        combined_image.paste(ns_img_pil, (w, 0))
        combined_image.paste(zt_img_pil, (w*2, 0))
        combined_image.paste(reg_img_pil, (w*3, 0))
        combined_image.paste(org_img_pil, (w*4, 0))
        combined_image.save(os.path.join(args.output_dir, f'visualization/vsd/{global_step}.png'))
        #-------- Visualization --------#
    
    def diff_loss(self, z0, prompt_embeds, pooled_embeds, net_lpips, args):
        
        device = self.transformer_reg.device
        u = compute_density_for_timestep_sampling(
                        weighting_scheme="uniform",
                        batch_size=1,
                        logit_mean=0.0,
                        logit_std=1.0,
                        mode_scale=1.29,
                    )
        
        t_idx = (u*1000).long().to(device)
        self.model.scheduler.set_timesteps(1000, device=device)
        times = self.model.scheduler.timesteps
        t = times[t_idx]
        sigma = t / 1000
        
        z0 = z0.to(device)
        z0, prompt_embeds = z0.detach(), prompt_embeds.detach()
        noise = torch.randn_like(z0)
        sigma = sigma.half()
        zt = (1-sigma) * z0 + sigma * noise         # noisy latents

        # v-prediction
        v_pred = self.predict_vector_reg(zt, t, prompt_embeds.to(device), pooled_embeds.to(device))
        model_pred = v_pred * (-sigma) + zt
        target = z0
        
        loss_weight = compute_loss_weighting_for_sd3("logit_normal", sigma)
        diffusion_loss = loss_weight.float() * F.mse_loss(model_pred.float(), target.float()) 
        
        loss_d = diffusion_loss

        return loss_d.mean()

class OSEDiff_SD3_TEST(torch.nn.Module):
    def __init__(self, args, base_model):
        super().__init__()
        
        self.args = args
        self.model = base_model
        self.lora_path = args.lora_path
        self.vae_path = args.vae_path
        
        # Add lora to transformer
        print(f'Loading LoRA to Transformer from {self.lora_path}')
        self.model.transformer.requires_grad_(False)
        lora_params, _ = inject_lora(self.model.transformer, {"AdaLayerNormZero"}, loras=self.lora_path, r=args.lora_rank, verbose=False)
        for name, param in self.model.transformer.named_parameters():
            param.requires_grad = False
        
        # Insert LoRA into VAE
        print(f"Loading LoRA to VAE from {self.vae_path}")
        self.model.vae, self.lora_vae_modules_encoder = inject_lora_vae(self.model.vae, lora_rank=args.lora_rank, verbose=False)
        encoder_state_dict_fp16 = torch.load(self.vae_path, map_location="cpu")
        self.model.vae.encoder.load_state_dict(encoder_state_dict_fp16)

    def predict_vector(self, z, t, prompt_emb, pooled_emb):
        v = self.model.transformer(hidden_states=z,
                             timestep=t,
                             pooled_projections=pooled_emb,
                             encoder_hidden_states=prompt_emb,
                             return_dict=False)[0]
        return v

    @torch.no_grad()
    def forward(self, x_src, prompt):
        
        z_src = self.model.vae.encode(x_src.to(dtype=torch.float32, device=self.model.vae.device)).latent_dist.sample() * self.model.vae.config.scaling_factor
        
        z_src = z_src.to(self.model.transformer.device)
        
        # calculate prompt_embeddings and neg_prompt_embeddings
        batch_size, _, _, _ = x_src.shape
        with torch.no_grad():
            prompt_embeds, pooled_embeds = self.model.encode_prompt([prompt], batch_size)
        
        self.model.scheduler.set_timesteps(1, device=self.model.device)
        timesteps = self.model.scheduler.timesteps

        # Solve ODE
        t = timesteps[0]
        timestep = t.expand(z_src.shape[0]).to(self.model.transformer.device)
        prompt_embeds = prompt_embeds.to(self.model.transformer.device, dtype=torch.float32)
        pooled_embeds = pooled_embeds.to(self.model.transformer.device, dtype=torch.float32)
        pred_v = self.predict_vector(z_src, timestep, prompt_embeds, pooled_embeds)
        
        z_src = z_src - pred_v
        
        with torch.no_grad():
            output_image = self.model.decode(z_src.to(dtype=torch.float32, device=self.model.vae.device))

        return output_image


class OSEDiff_SD3_TEST_efficient(torch.nn.Module):
    def __init__(self, args, base_model):
        super().__init__()
        
        self.args = args
        self.model = base_model
        self.lora_path = args.lora_path
        self.vae_path = args.vae_path
        
        # Add lora to transformer
        print(f'Loading LoRA to Transformer from {self.lora_path}')
        self.model.transformer.requires_grad_(False)
        lora_params, _ = inject_lora(self.model.transformer, {"AdaLayerNormZero"}, loras=self.lora_path, r=args.lora_rank, verbose=False)
        for name, param in self.model.transformer.named_parameters():
            param.requires_grad = False
        
        # Insert LoRA into VAE
        print(f"Loading LoRA to VAE from {self.vae_path}")
        self.model.vae, self.lora_vae_modules_encoder = inject_lora_vae(self.model.vae, lora_rank=args.lora_rank, verbose=False)
        encoder_state_dict_fp16 = torch.load(self.vae_path, map_location="cpu")
        self.model.vae.encoder.load_state_dict(encoder_state_dict_fp16)

    def predict_vector(self, z, t, prompt_emb, pooled_emb):
        v = self.model.transformer(hidden_states=z,
                             timestep=t,
                             pooled_projections=pooled_emb,
                             encoder_hidden_states=prompt_emb,
                             return_dict=False)[0]
        return v

    @torch.no_grad()
    def forward(self, x_src, prompt):
        
        z_src = self.model.vae.encode(x_src.to(dtype=torch.float32, device=self.model.vae.device)).latent_dist.sample() * self.model.vae.config.scaling_factor
        
        z_src = z_src.to(self.model.transformer.device)
        
        # calculate prompt_embeddings
        batch_size, _, _, _ = x_src.shape
        prompt_embeds, pooled_embeds = self.model.encode_prompt([prompt], batch_size)
        
        self.model.scheduler.set_timesteps(1, device=self.model.device)
        timesteps = self.model.scheduler.timesteps

        # Solve ODE
        t = timesteps[0]
        timestep = t.expand(z_src.shape[0]).to(self.model.transformer.device)
        prompt_embeds = prompt_embeds.to(self.model.transformer.device, dtype=torch.float32)
        pooled_embeds = pooled_embeds.to(self.model.transformer.device, dtype=torch.float32)
        pred_v = self.predict_vector(z_src, timestep, prompt_embeds, pooled_embeds)
        z_src = z_src - pred_v
        
        output_image = self.model.decode(z_src.to(dtype=torch.float32, device=self.model.vae.device))

        return output_image