Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,308 Bytes
0301e15 7130239 0301e15 d409962 0301e15 80bb1dc d409962 0301e15 7130239 0301e15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import os
import sys
sys.path.append(os.getcwd())
import glob
import argparse
import torch
from torchvision import transforms
import torchvision.transforms.functional as F
import numpy as np
from PIL import Image
from ram.models.ram_lora import ram
from ram import inference_ram as inference
from utils.wavelet_color_fix import adain_color_fix, wavelet_color_fix
tensor_transforms = transforms.Compose([
transforms.ToTensor(),
])
ram_transforms = transforms.Compose([
transforms.Resize((384, 384)),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def resize_and_center_crop(img: Image.Image, size: int) -> Image.Image:
w, h = img.size
scale = size / min(w, h)
new_w, new_h = int(w * scale), int(h * scale)
img = img.resize((new_w, new_h), Image.LANCZOS)
left = (new_w - size) // 2
top = (new_h - size) // 2
return img.crop((left, top, left + size, top + size))
def get_validation_prompt(args, image, prompt_image_path, dape_model=None, vlm_model=None, device='cuda'):
# prepare low-res tensor for SR input
lq = tensor_transforms(image).unsqueeze(0).to(device)
# select prompt source
if args.prompt_type == "null":
prompt_text = args.prompt or ""
elif args.prompt_type == "dape":
lq_ram = ram_transforms(lq).to(dtype=weight_dtype)
captions = inference(lq_ram, dape_model)
prompt_text = f"{captions[0]}, {args.prompt}," if args.prompt else captions[0]
elif args.prompt_type in ("vlm"):
message_text = None
if args.rec_type == "recursive":
message_text = "What is in this image? Give me a set of words."
print(f'MESSAGE TEXT: {message_text}')
messages = [
{"role": "system", "content": f"{message_text}"},
{
"role": "user",
"content": [
{"type": "image", "image": prompt_image_path}
]
}
]
text = vlm_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = vlm_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
elif args.rec_type == "recursive_multiscale":
start_image_path = prompt_image_path[0]
input_image_path = prompt_image_path[1]
message_text = "The second image is a zoom-in of the first image. Based on this knowledge, what is in the second image? Give me a set of words."
print(f'START IMAGE PATH: {start_image_path}\nINPUT IMAGE PATH: {input_image_path}\nMESSAGE TEXT: {message_text}')
messages = [
{"role": "system", "content": f"{message_text}"},
{
"role": "user",
"content": [
{"type": "image", "image": start_image_path},
{"type": "image", "image": input_image_path}
]
}
]
print(f'MESSAGES\n{messages}')
text = vlm_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = vlm_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
else:
raise ValueError(f"VLM prompt generation not implemented for rec_type: {args.rec_type}")
inputs = inputs.to("cuda")
original_sr_devices = {}
if args.efficient_memory and 'model' in globals() and hasattr(model, 'text_enc_1'): # Check if SR model is defined
print("Moving SR model components to CPU for VLM inference.")
original_sr_devices['text_enc_1'] = model.text_enc_1.device
original_sr_devices['text_enc_2'] = model.text_enc_2.device
original_sr_devices['text_enc_3'] = model.text_enc_3.device
original_sr_devices['transformer'] = model.transformer.device
original_sr_devices['vae'] = model.vae.device
model.text_enc_1.to('cpu')
model.text_enc_2.to('cpu')
model.text_enc_3.to('cpu')
model.transformer.to('cpu')
model.vae.to('cpu')
vlm_model.to('cuda') # vlm_model should already be on its device_map="auto" device
generated_ids = vlm_model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = vlm_processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
prompt_text = f"{output_text[0]}, {args.prompt}," if args.prompt else output_text[0]
if args.efficient_memory and 'model' in globals() and hasattr(model, 'text_enc_1'):
print("Restoring SR model components to original devices.")
vlm_model.to('cpu') # If vlm_model was moved to a specific cuda device and needs to be offloaded
model.text_enc_1.to(original_sr_devices['text_enc_1'])
model.text_enc_2.to(original_sr_devices['text_enc_2'])
model.text_enc_3.to(original_sr_devices['text_enc_3'])
model.transformer.to(original_sr_devices['transformer'])
model.vae.to(original_sr_devices['vae'])
else:
raise ValueError(f"Unknown prompt_type: {args.prompt_type}")
return prompt_text, lq
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--input_image', '-i', type=str, default='preset/datasets/test_dataset/input', help='path to the input image')
parser.add_argument('--output_dir', '-o', type=str, default='preset/datasets/test_dataset/output', help='the directory to save the output')
parser.add_argument('--pretrained_model_name_or_path', type=str, default=None, help='sd model path')
parser.add_argument('--seed', type=int, default=42, help='Random seed to be used')
parser.add_argument('--process_size', type=int, default=512)
parser.add_argument('--upscale', type=int, default=4)
parser.add_argument('--align_method', type=str, choices=['wavelet', 'adain', 'nofix'], default='nofix')
parser.add_argument('--lora_path', type=str, default=None, help='for LoRA of SR model')
parser.add_argument('--vae_path', type=str, default=None)
parser.add_argument('--prompt', type=str, default='', help='user prompts')
parser.add_argument('--prompt_type', type=str, choices=['null','dape','vlm'], default='dape', help='type of prompt to use')
parser.add_argument('--ram_path', type=str, default=None)
parser.add_argument('--ram_ft_path', type=str, default=None)
parser.add_argument('--save_prompts', type=bool, default=True)
parser.add_argument('--mixed_precision', type=str, choices=['fp16', 'fp32'], default='fp16')
parser.add_argument('--merge_and_unload_lora', action='store_true', help='merge lora weights before inference')
parser.add_argument('--lora_rank', type=int, default=4)
parser.add_argument('--vae_decoder_tiled_size', type=int, default=224)
parser.add_argument('--vae_encoder_tiled_size', type=int, default=1024)
parser.add_argument('--latent_tiled_size', type=int, default=96)
parser.add_argument('--latent_tiled_overlap', type=int, default=32)
parser.add_argument('--rec_type', type=str, choices=['nearest', 'bicubic','onestep','recursive','recursive_multiscale'], default='recursive', help='type of inference to use')
parser.add_argument('--rec_num', type=int, default=4)
parser.add_argument('--efficient_memory', default=False, action='store_true')
args = parser.parse_args()
global weight_dtype
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
# initialize SR model
model = None
if args.rec_type not in ('nearest', 'bicubic'):
if not args.efficient_memory:
from osediff_sd3 import OSEDiff_SD3_TEST, SD3Euler
model = SD3Euler()
model.text_enc_1.to('cuda')
model.text_enc_2.to('cuda')
model.text_enc_3.to('cuda')
model.transformer.to('cuda', dtype=torch.float32)
model.vae.to('cuda', dtype=torch.float32)
for p in [model.text_enc_1, model.text_enc_2, model.text_enc_3, model.transformer, model.vae]:
p.requires_grad_(False)
model_test = OSEDiff_SD3_TEST(args, model)
else:
# For efficient memory, text encoders are moved to CPU/GPU on demand in get_validation_prompt
# Only load transformer and VAE initially if they are always on GPU
from osediff_sd3 import OSEDiff_SD3_TEST_efficient, SD3Euler
model = SD3Euler()
model.transformer.to('cuda', dtype=torch.float32)
model.vae.to('cuda', dtype=torch.float32)
for p in [model.text_enc_1, model.text_enc_2, model.text_enc_3, model.transformer, model.vae]:
p.requires_grad_(False)
model_test = OSEDiff_SD3_TEST_efficient(args, model)
# gather input images
if os.path.isdir(args.input_image):
image_names = sorted(glob.glob(f'{args.input_image}/*.png'))
else:
image_names = [args.input_image]
# load DAPE if needed
DAPE = None
if args.prompt_type == "dape":
DAPE = ram(pretrained=args.ram_path,
pretrained_condition=args.ram_ft_path,
image_size=384,
vit='swin_l')
DAPE.eval().to("cuda")
DAPE = DAPE.to(dtype=weight_dtype)
# load VLM pipeline if needed
vlm_model = None
global vlm_processor
global process_vision_info
vlm_processor = None
if args.prompt_type == "vlm":
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
vlm_model_name = "Qwen/Qwen2.5-VL-3B-Instruct"
print(f"Loading base VLM model: {vlm_model_name}")
vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
vlm_model_name,
torch_dtype="auto",
device_map="auto"
)
vlm_processor = AutoProcessor.from_pretrained(vlm_model_name)
print('Base VLM LOADING COMPLETE')
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(os.path.join(args.output_dir, 'per-sample'), exist_ok=True)
os.makedirs(os.path.join(args.output_dir, 'per-scale'), exist_ok=True)
os.makedirs(os.path.join(args.output_dir, 'recursive'), exist_ok=True)
print(f'There are {len(image_names)} images.')
print(f'Align Method Used: {args.align_method}')
print(f'Prompt Type: {args.prompt_type}')
# inference loop
for image_name in image_names:
bname = os.path.basename(image_name)
rec_dir = os.path.join(args.output_dir, 'per-sample', bname[:-4])
os.makedirs(rec_dir, exist_ok=True)
if args.save_prompts:
txt_path = os.path.join(rec_dir, 'txt')
os.makedirs(txt_path, exist_ok=True)
print(f'#### IMAGE: {bname}')
# first image
os.makedirs(os.path.join(args.output_dir, 'per-scale', 'scale0'), exist_ok=True)
first_image = Image.open(image_name).convert('RGB')
first_image = resize_and_center_crop(first_image, args.process_size)
first_image.save(f'{rec_dir}/0.png')
first_image.save(os.path.join(args.output_dir, 'per-scale', 'scale0', bname))
# recursion
for rec in range(args.rec_num):
print(f'RECURSION: {rec}')
os.makedirs(os.path.join(args.output_dir, 'per-scale', f'scale{rec+1}'), exist_ok=True)
start_image_path = None
input_image_path = None
prompt_image_path = None # this will hold the path(s) for prompt extraction
current_sr_input_image_pil = None
if args.rec_type in ('nearest', 'bicubic', 'onestep'):
start_image_pil_path = f'{rec_dir}/0.png'
start_image_pil = Image.open(start_image_pil_path).convert('RGB')
rscale = pow(args.upscale, rec+1)
w, h = start_image_pil.size
new_w, new_h = w // rscale, h // rscale
# crop from the original highest-res image available for this step
cropped_region = start_image_pil.crop(((w-new_w)//2, (h-new_h)//2, (w+new_w)//2, (h+new_h)//2))
if args.rec_type == 'onestep':
current_sr_input_image_pil = cropped_region.resize((w, h), Image.BICUBIC)
prompt_image_path = f'{rec_dir}/0_input_for_{rec+1}.png'
current_sr_input_image_pil.save(prompt_image_path)
elif args.rec_type == 'bicubic':
current_sr_input_image_pil = cropped_region.resize((w, h), Image.BICUBIC)
current_sr_input_image_pil.save(f'{rec_dir}/{rec+1}.png')
current_sr_input_image_pil.save(os.path.join(args.output_dir, 'per-scale', f'scale{rec+1}', bname))
continue
elif args.rec_type == 'nearest':
current_sr_input_image_pil = cropped_region.resize((w, h), Image.NEAREST)
current_sr_input_image_pil.save(f'{rec_dir}/{rec+1}.png')
current_sr_input_image_pil.save(os.path.join(args.output_dir, 'per-scale', f'scale{rec+1}', bname))
continue
elif args.rec_type == 'recursive':
# input for SR is based on the previous SR output, cropped and resized
prev_sr_output_path = f'{rec_dir}/{rec}.png'
prev_sr_output_pil = Image.open(prev_sr_output_path).convert('RGB')
rscale = args.upscale
w, h = prev_sr_output_pil.size
if rscale != 0:
new_w, new_h = w // rscale, h // rscale
else:
new_w, new_h = w, h
cropped_region = prev_sr_output_pil.crop(((w-new_w)//2, (h-new_h)//2, (w+new_w)//2, (h+new_h)//2))
current_sr_input_image_pil = cropped_region.resize((w, h), Image.BICUBIC)
# this resized image is also the input for VLM
input_image_path = f'{rec_dir}/{rec+1}_input.png'
current_sr_input_image_pil.save(input_image_path)
prompt_image_path = input_image_path
elif args.rec_type == 'recursive_multiscale':
prev_sr_output_path = f'{rec_dir}/{rec}.png'
prev_sr_output_pil = Image.open(prev_sr_output_path).convert('RGB')
rscale = args.upscale
w, h = prev_sr_output_pil.size
if rscale != 0:
new_w, new_h = w // rscale, h // rscale
else:
new_w, new_h = w, h
cropped_region = prev_sr_output_pil.crop(((w-new_w)//2, (h-new_h)//2, (w+new_w)//2, (h+new_h)//2))
current_sr_input_image_pil = cropped_region.resize((w, h), Image.BICUBIC)
# save the SR input image (which is the "zoomed-in" image for VLM)
zoomed_image_path = f'{rec_dir}/{rec+1}_input.png'
current_sr_input_image_pil.save(zoomed_image_path)
prompt_image_path = [prev_sr_output_path, zoomed_image_path]
else:
raise ValueError(f"Unknown recursion_type: {args.rec_type}")
# generate prompts
validation_prompt, lq = get_validation_prompt(args, current_sr_input_image_pil, prompt_image_path, DAPE, vlm_model)
if args.save_prompts:
with open(os.path.join(txt_path, f'{rec}.txt'), 'w', encoding='utf-8') as f:
f.write(validation_prompt)
print(f'TAG: {validation_prompt}')
# super-resolution
with torch.no_grad():
lq = lq * 2 - 1
if args.efficient_memory and model is not None:
print("Ensuring SR model components are on CUDA for SR inference.")
if not isinstance(model_test, OSEDiff_SD3_TEST_efficient):
model.text_enc_1.to('cuda')
model.text_enc_2.to('cuda')
model.text_enc_3.to('cuda')
# transformer and VAE should already be on CUDA per initialization
model.transformer.to('cuda', dtype=torch.float32)
model.vae.to('cuda', dtype=torch.float32)
output_image = model_test(lq, prompt=validation_prompt)
output_image = torch.clamp(output_image[0].cpu(), -1.0, 1.0)
output_pil = transforms.ToPILImage()(output_image * 0.5 + 0.5)
if args.align_method == 'adain':
output_pil = adain_color_fix(target=output_pil, source=current_sr_input_image_pil)
elif args.align_method == 'wavelet':
output_pil = wavelet_color_fix(target=output_pil, source=current_sr_input_image_pil)
output_pil.save(f'{rec_dir}/{rec+1}.png') # this is the SR output
output_pil.save(os.path.join(args.output_dir, 'per-scale', f'scale{rec+1}', bname))
# concatenate and save
imgs = [Image.open(os.path.join(rec_dir, f'{i}.png')).convert('RGB') for i in range(args.rec_num+1)]
concat = Image.new('RGB', (sum(im.width for im in imgs), max(im.height for im in imgs)))
x_off = 0
for im in imgs:
concat.paste(im, (x_off, 0))
x_off += im.width
concat.save(os.path.join(rec_dir, bname))
concat.save(os.path.join(args.output_dir, 'recursive', bname)) |