File size: 12,132 Bytes
e297a71
 
780320d
 
 
 
 
80fbabd
 
 
 
ba815e8
e297a71
 
 
 
87c1890
 
780320d
80fbabd
e297a71
 
 
 
d73c075
e297a71
 
 
 
d73c075
 
 
 
e297a71
d73c075
 
 
 
e297a71
 
80fbabd
e297a71
 
80fbabd
 
 
 
 
 
e297a71
80fbabd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e297a71
d73c075
 
 
80fbabd
d73c075
 
 
 
e297a71
80fbabd
 
e297a71
80fbabd
 
 
 
e297a71
 
80fbabd
 
 
 
 
e297a71
d73c075
 
80fbabd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e297a71
80fbabd
 
 
e297a71
d73c075
 
e297a71
80fbabd
 
 
 
c5e0035
80fbabd
 
 
 
 
 
 
bff0b56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80fbabd
 
 
e297a71
80fbabd
 
e297a71
80fbabd
 
 
 
 
 
 
 
 
 
 
 
780320d
e297a71
 
80fbabd
e297a71
 
87c1890
780320d
 
24ee135
780320d
 
 
 
e297a71
780320d
 
87c1890
 
 
 
 
 
 
 
 
 
 
780320d
 
 
e297a71
87c1890
 
e297a71
 
3fd8a80
e297a71
 
 
 
 
 
 
 
 
 
80fbabd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c1890
e297a71
80fbabd
e297a71
80fbabd
 
e297a71
 
 
d73c075
87c1890
80fbabd
e297a71
 
 
 
 
 
 
3fd8a80
 
f1cb021
3fd8a80
 
 
 
 
 
e297a71
80fbabd
e297a71
d73c075
80fbabd
 
 
 
 
 
e297a71
80fbabd
 
e297a71
 
 
80fbabd
e297a71
d73c075
e297a71
80fbabd
87e5339
 
d73c075
 
e297a71
80fbabd
87e5339
 
80fbabd
 
 
 
87e5339
 
80fbabd
 
 
 
87e5339
 
d73c075
 
e297a71
80fbabd
e297a71
 
87c1890
 
80fbabd
87c1890
 
 
780320d
e297a71
 
 
738ecfb
e08ff81
bff0b56
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import gradio as gr
import subprocess
import os
import shutil
from pathlib import Path
import spaces

# import the updated recursive_multiscale_sr that expects a list of centers
from inference_coz_single import recursive_multiscale_sr

from PIL import Image, ImageDraw

# ------------------------------------------------------------------
# CONFIGURE THESE PATHS TO MATCH YOUR PROJECT STRUCTURE
# ------------------------------------------------------------------

INPUT_DIR   = "samples"
OUTPUT_DIR  = "inference_results/coz_vlmprompt"


# ------------------------------------------------------------------
# HELPER: Resize & center-crop to 512, preserving aspect ratio
# ------------------------------------------------------------------

def resize_and_center_crop(img: Image.Image, size: int) -> Image.Image:
    """
    Resize the input PIL image so that its shorter side == `size`,
    then center-crop to exactly (size x size).
    """
    w, h = img.size
    scale = size / min(w, h)
    new_w, new_h = int(w * scale), int(h * scale)
    img = img.resize((new_w, new_h), Image.LANCZOS)

    left = (new_w - size) // 2
    top  = (new_h - size) // 2
    return img.crop((left, top, left + size, top + size))


# ------------------------------------------------------------------
# HELPER: Draw four true “nested” rectangles, matching the SR logic
# ------------------------------------------------------------------

def make_preview_with_boxes(
    image_path: str,
    scale_option: str,
    cx_norm: float,
    cy_norm: float,
) -> Image.Image:
    """
    1) Open the uploaded image, resize & center-crop to 512×512.
    2) Let scale_int = int(scale_option.replace("x","")).
       Then the four nested crop‐sizes (in pixels) are:
         size[0] = 512 / (scale_int^1),
         size[1] = 512 / (scale_int^2),
         size[2] = 512 / (scale_int^3),
         size[3] = 512 / (scale_int^4).
    3) Iteratively compute each crop’s top-left in “original 512×512” space:
       - Start with prev_tl = (0,0), prev_size = 512.
       - For i in [0..3]:
           center_abs_x = prev_tl_x + cx_norm * prev_size
           center_abs_y = prev_tl_y + cy_norm * prev_size
           unc_x0 = center_abs_x - (size[i]/2)
           unc_y0 = center_abs_y - (size[i]/2)
           clamp x0 ∈ [prev_tl_x, prev_tl_x + prev_size - size[i]]
                 y0 ∈ [prev_tl_y, prev_tl_y + prev_size - size[i]]
           Draw a rectangle from (x0, y0) to (x0 + size[i], y0 + size[i]).
           Then set prev_tl = (x0, y0), prev_size = size[i].
    4) Return the PIL image with those four truly nested outlines.
    """
    try:
        orig = Image.open(image_path).convert("RGB")
    except Exception as e:
        # On error, return a gray 512×512 with the error text
        fallback = Image.new("RGB", (512, 512), (200, 200, 200))
        draw = ImageDraw.Draw(fallback)
        draw.text((20, 20), f"Error:\n{e}", fill="red")
        return fallback

    # 1) Resize & center-crop to 512×512
    base = resize_and_center_crop(orig, 512)

    # 2) Compute the four nested crop‐sizes
    scale_int = int(scale_option.replace("x", ""))  # e.g. "4x" → 4
    if scale_int <= 1:
        # If 1×, then all “nested” sizes are 512 (no real nesting)
        sizes = [512, 512, 512, 512]
    else:
        sizes = [
            512 // (scale_int ** (i + 1))
            for i in range(4)
        ]
        # e.g. if scale_int=4 → sizes = [128, 32, 8, 2]

    draw = ImageDraw.Draw(base)
    colors = ["red", "lime", "cyan", "yellow"]
    width = 3

    # 3) Iteratively compute nested rectangles
    prev_tl_x, prev_tl_y = 0.0, 0.0
    prev_size = 512.0

    for idx, crop_size in enumerate(sizes):
        # 3.a) Where is the “normalized center” in this current 512×512 region?
        center_abs_x = prev_tl_x + (cx_norm * prev_size)
        center_abs_y = prev_tl_y + (cy_norm * prev_size)

        # 3.b) Unclamped top-left for this crop
        unc_x0 = center_abs_x - (crop_size / 2.0)
        unc_y0 = center_abs_y - (crop_size / 2.0)

        # 3.c) Clamp so the crop window stays inside [prev_tl .. prev_tl + prev_size]
        min_x0 = prev_tl_x
        max_x0 = prev_tl_x + prev_size - crop_size
        min_y0 = prev_tl_y
        max_y0 = prev_tl_y + prev_size - crop_size

        x0 = max(min_x0, min(unc_x0, max_x0))
        y0 = max(min_y0, min(unc_y0, max_y0))
        x1 = x0 + crop_size
        y1 = y0 + crop_size

        # Draw the rectangle (cast to int for pixels)
        draw.rectangle(
            [(int(x0), int(y0)), (int(x1), int(y1))],
            outline=colors[idx % len(colors)],
            width=width
        )

        # 3.d) Update for the next iteration
        prev_tl_x, prev_tl_y = x0, y0
        prev_size = crop_size

    return base


# ------------------------------------------------------------------
# HELPER FUNCTION FOR INFERENCE (build a list of identical centers)
# ------------------------------------------------------------------

@spaces.GPU()
def run_with_upload(
    uploaded_image_path: str,
    upscale_option: str,
    cx_norm: float,
    cy_norm: float,
):
    """
    Perform chain-of-zoom super-resolution on a given image, using recursive multi-scale upscaling centered on a specific point.

    This function enhances a given image by progressively zooming into a specific point, using a recursive deep super-resolution model.
    
    Args:
        uploaded_image_path (str): Path to the input image file on disk.
        upscale_option (str): The desired upscale factor as a string. Valid options are "1x", "2x", and "4x".
            - "1x" means no upscaling.
            - "2x" means 2× enlargement per zoom step.
            - "4x" means 4× enlargement per zoom step.
        cx_norm (float): Normalized X-coordinate (0 to 1) of the zoom center.
        cy_norm (float): Normalized Y-coordinate (0 to 1) of the zoom center.

    Returns:
        list[PIL.Image.Image]: A list of progressively zoomed-in and super-resolved images at each recursion step (typically 4),
        centered around the user-specified point.
        
    Note:
        The center point is repeated for each recursion level to maintain consistency during zooming.
        This function uses a modified version of the `recursive_multiscale_sr` pipeline for inference.
    """
    if uploaded_image_path is None:
        return []

    upscale_value = int(upscale_option.replace("x", ""))
    rec_num = 4  # match the SR pipeline’s default recursion depth

    centers = [(cx_norm, cy_norm)] * rec_num

    # Call the modified SR function
    sr_list, _ = recursive_multiscale_sr(
        uploaded_image_path,
        upscale=upscale_value,
        rec_num=rec_num,
        centers=centers,
    )

    # Return the list of PIL images (Gradio Gallery expects a list)
    return sr_list


# ------------------------------------------------------------------
# BUILD THE GRADIO INTERFACE (two sliders + correct preview)
# ------------------------------------------------------------------

css = """
#col-container {
    margin: 0 auto;
    max-width: 1024px;
}
"""

with gr.Blocks(css=css) as demo:

    gr.HTML(
        """
        <div style="text-align: center;">
            <h1>Chain-of-Zoom</h1>
            <p style="font-size:16px;">Extreme Super-Resolution via Scale Autoregression and Preference Alignment</p>
        </div>
        <br>
        <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
            <a href="https://github.com/bryanswkim/Chain-of-Zoom">
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a>
        </div>
        """
    )

    with gr.Column(elem_id="col-container"):

        with gr.Row():
            with gr.Column():
                # 1) Image upload component
                upload_image = gr.Image(
                    label="Input image",
                    type="filepath"
                )

                # 2) Radio for choosing 1× / 2× / 4× upscaling
                upscale_radio = gr.Radio(
                    choices=["1x", "2x", "4x"],
                    value="2x",
                    show_label=False
                )

                # 3) Two sliders for normalized center (0..1)
                center_x = gr.Slider(
                    label="Center X (normalized)",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.01,
                    value=0.5
                )
                center_y = gr.Slider(
                    label="Center Y (normalized)",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.01,
                    value=0.5
                )

                # 4) Button to launch inference
                run_button = gr.Button("Chain-of-Zoom it")

                # 5) Preview (512×512 + four truly nested boxes)
                preview_with_box = gr.Image(
                    label="Preview (512×512 with nested boxes)",
                    type="pil",
                    interactive=False
                )


            with gr.Column():
                # 6) Gallery to display multiple output images
                output_gallery = gr.Gallery(
                    label="Inference Results",
                    show_label=True,
                    elem_id="gallery",
                    columns=[2], rows=[2]
                )

                examples = gr.Examples(
                    # List of example-rows. Each row is [input_image, scale, cx, cy]
                    examples=[["samples/0479.png", "4x", 0.5, 0.5], ["samples/0064.png", "4x", 0.5, 0.5], ["samples/0245.png", "4x", 0.5, 0.5], ["samples/0393.png", "4x", 0.5, 0.5]],
                    inputs=[upload_image, upscale_radio, center_x, center_y],
                    outputs=[output_gallery],
                    fn=run_with_upload,
                    cache_examples=True  
                )

        # ------------------------------------------------------------------
        # CALLBACK #1: update the preview whenever inputs change
        # ------------------------------------------------------------------

        def update_preview(
            img_path: str,
            scale_opt: str,
            cx: float,
            cy: float
        ) -> Image.Image | None:
            """
            If no image uploaded, show blank; otherwise, draw four nested boxes
            exactly as the SR pipeline would crop at each recursion.
            """
            if img_path is None:
                return None
            return make_preview_with_boxes(img_path, scale_opt, cx, cy)

        upload_image.change(
            fn=update_preview,
            inputs=[upload_image, upscale_radio, center_x, center_y],
            outputs=[preview_with_box],
            show_api=False
        )
        upscale_radio.change(
            fn=update_preview,
            inputs=[upload_image, upscale_radio, center_x, center_y],
            outputs=[preview_with_box],
            show_api=False
        )
        center_x.change(
            fn=update_preview,
            inputs=[upload_image, upscale_radio, center_x, center_y],
            outputs=[preview_with_box],
            show_api=False
        )
        center_y.change(
            fn=update_preview,
            inputs=[upload_image, upscale_radio, center_x, center_y],
            outputs=[preview_with_box],
            show_api=False
        )

        # ------------------------------------------------------------------
        # CALLBACK #2: on button‐click, run the SR pipeline
        # ------------------------------------------------------------------

        run_button.click(
            fn=run_with_upload,
            inputs=[upload_image, upscale_radio, center_x, center_y],
            outputs=[output_gallery]
        )


# ------------------------------------------------------------------
# START THE GRADIO SERVER
# ------------------------------------------------------------------
demo.queue()

demo.launch(share=True, mcp_server=True)