Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,132 Bytes
e297a71 780320d 80fbabd ba815e8 e297a71 87c1890 780320d 80fbabd e297a71 d73c075 e297a71 d73c075 e297a71 d73c075 e297a71 80fbabd e297a71 80fbabd e297a71 80fbabd e297a71 d73c075 80fbabd d73c075 e297a71 80fbabd e297a71 80fbabd e297a71 80fbabd e297a71 d73c075 80fbabd e297a71 80fbabd e297a71 d73c075 e297a71 80fbabd c5e0035 80fbabd bff0b56 80fbabd e297a71 80fbabd e297a71 80fbabd 780320d e297a71 80fbabd e297a71 87c1890 780320d 24ee135 780320d e297a71 780320d 87c1890 780320d e297a71 87c1890 e297a71 3fd8a80 e297a71 80fbabd 87c1890 e297a71 80fbabd e297a71 80fbabd e297a71 d73c075 87c1890 80fbabd e297a71 3fd8a80 f1cb021 3fd8a80 e297a71 80fbabd e297a71 d73c075 80fbabd e297a71 80fbabd e297a71 80fbabd e297a71 d73c075 e297a71 80fbabd 87e5339 d73c075 e297a71 80fbabd 87e5339 80fbabd 87e5339 80fbabd 87e5339 d73c075 e297a71 80fbabd e297a71 87c1890 80fbabd 87c1890 780320d e297a71 738ecfb e08ff81 bff0b56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import gradio as gr
import subprocess
import os
import shutil
from pathlib import Path
import spaces
# import the updated recursive_multiscale_sr that expects a list of centers
from inference_coz_single import recursive_multiscale_sr
from PIL import Image, ImageDraw
# ------------------------------------------------------------------
# CONFIGURE THESE PATHS TO MATCH YOUR PROJECT STRUCTURE
# ------------------------------------------------------------------
INPUT_DIR = "samples"
OUTPUT_DIR = "inference_results/coz_vlmprompt"
# ------------------------------------------------------------------
# HELPER: Resize & center-crop to 512, preserving aspect ratio
# ------------------------------------------------------------------
def resize_and_center_crop(img: Image.Image, size: int) -> Image.Image:
"""
Resize the input PIL image so that its shorter side == `size`,
then center-crop to exactly (size x size).
"""
w, h = img.size
scale = size / min(w, h)
new_w, new_h = int(w * scale), int(h * scale)
img = img.resize((new_w, new_h), Image.LANCZOS)
left = (new_w - size) // 2
top = (new_h - size) // 2
return img.crop((left, top, left + size, top + size))
# ------------------------------------------------------------------
# HELPER: Draw four true “nested” rectangles, matching the SR logic
# ------------------------------------------------------------------
def make_preview_with_boxes(
image_path: str,
scale_option: str,
cx_norm: float,
cy_norm: float,
) -> Image.Image:
"""
1) Open the uploaded image, resize & center-crop to 512×512.
2) Let scale_int = int(scale_option.replace("x","")).
Then the four nested crop‐sizes (in pixels) are:
size[0] = 512 / (scale_int^1),
size[1] = 512 / (scale_int^2),
size[2] = 512 / (scale_int^3),
size[3] = 512 / (scale_int^4).
3) Iteratively compute each crop’s top-left in “original 512×512” space:
- Start with prev_tl = (0,0), prev_size = 512.
- For i in [0..3]:
center_abs_x = prev_tl_x + cx_norm * prev_size
center_abs_y = prev_tl_y + cy_norm * prev_size
unc_x0 = center_abs_x - (size[i]/2)
unc_y0 = center_abs_y - (size[i]/2)
clamp x0 ∈ [prev_tl_x, prev_tl_x + prev_size - size[i]]
y0 ∈ [prev_tl_y, prev_tl_y + prev_size - size[i]]
Draw a rectangle from (x0, y0) to (x0 + size[i], y0 + size[i]).
Then set prev_tl = (x0, y0), prev_size = size[i].
4) Return the PIL image with those four truly nested outlines.
"""
try:
orig = Image.open(image_path).convert("RGB")
except Exception as e:
# On error, return a gray 512×512 with the error text
fallback = Image.new("RGB", (512, 512), (200, 200, 200))
draw = ImageDraw.Draw(fallback)
draw.text((20, 20), f"Error:\n{e}", fill="red")
return fallback
# 1) Resize & center-crop to 512×512
base = resize_and_center_crop(orig, 512)
# 2) Compute the four nested crop‐sizes
scale_int = int(scale_option.replace("x", "")) # e.g. "4x" → 4
if scale_int <= 1:
# If 1×, then all “nested” sizes are 512 (no real nesting)
sizes = [512, 512, 512, 512]
else:
sizes = [
512 // (scale_int ** (i + 1))
for i in range(4)
]
# e.g. if scale_int=4 → sizes = [128, 32, 8, 2]
draw = ImageDraw.Draw(base)
colors = ["red", "lime", "cyan", "yellow"]
width = 3
# 3) Iteratively compute nested rectangles
prev_tl_x, prev_tl_y = 0.0, 0.0
prev_size = 512.0
for idx, crop_size in enumerate(sizes):
# 3.a) Where is the “normalized center” in this current 512×512 region?
center_abs_x = prev_tl_x + (cx_norm * prev_size)
center_abs_y = prev_tl_y + (cy_norm * prev_size)
# 3.b) Unclamped top-left for this crop
unc_x0 = center_abs_x - (crop_size / 2.0)
unc_y0 = center_abs_y - (crop_size / 2.0)
# 3.c) Clamp so the crop window stays inside [prev_tl .. prev_tl + prev_size]
min_x0 = prev_tl_x
max_x0 = prev_tl_x + prev_size - crop_size
min_y0 = prev_tl_y
max_y0 = prev_tl_y + prev_size - crop_size
x0 = max(min_x0, min(unc_x0, max_x0))
y0 = max(min_y0, min(unc_y0, max_y0))
x1 = x0 + crop_size
y1 = y0 + crop_size
# Draw the rectangle (cast to int for pixels)
draw.rectangle(
[(int(x0), int(y0)), (int(x1), int(y1))],
outline=colors[idx % len(colors)],
width=width
)
# 3.d) Update for the next iteration
prev_tl_x, prev_tl_y = x0, y0
prev_size = crop_size
return base
# ------------------------------------------------------------------
# HELPER FUNCTION FOR INFERENCE (build a list of identical centers)
# ------------------------------------------------------------------
@spaces.GPU()
def run_with_upload(
uploaded_image_path: str,
upscale_option: str,
cx_norm: float,
cy_norm: float,
):
"""
Perform chain-of-zoom super-resolution on a given image, using recursive multi-scale upscaling centered on a specific point.
This function enhances a given image by progressively zooming into a specific point, using a recursive deep super-resolution model.
Args:
uploaded_image_path (str): Path to the input image file on disk.
upscale_option (str): The desired upscale factor as a string. Valid options are "1x", "2x", and "4x".
- "1x" means no upscaling.
- "2x" means 2× enlargement per zoom step.
- "4x" means 4× enlargement per zoom step.
cx_norm (float): Normalized X-coordinate (0 to 1) of the zoom center.
cy_norm (float): Normalized Y-coordinate (0 to 1) of the zoom center.
Returns:
list[PIL.Image.Image]: A list of progressively zoomed-in and super-resolved images at each recursion step (typically 4),
centered around the user-specified point.
Note:
The center point is repeated for each recursion level to maintain consistency during zooming.
This function uses a modified version of the `recursive_multiscale_sr` pipeline for inference.
"""
if uploaded_image_path is None:
return []
upscale_value = int(upscale_option.replace("x", ""))
rec_num = 4 # match the SR pipeline’s default recursion depth
centers = [(cx_norm, cy_norm)] * rec_num
# Call the modified SR function
sr_list, _ = recursive_multiscale_sr(
uploaded_image_path,
upscale=upscale_value,
rec_num=rec_num,
centers=centers,
)
# Return the list of PIL images (Gradio Gallery expects a list)
return sr_list
# ------------------------------------------------------------------
# BUILD THE GRADIO INTERFACE (two sliders + correct preview)
# ------------------------------------------------------------------
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<div style="text-align: center;">
<h1>Chain-of-Zoom</h1>
<p style="font-size:16px;">Extreme Super-Resolution via Scale Autoregression and Preference Alignment</p>
</div>
<br>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/bryanswkim/Chain-of-Zoom">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
</div>
"""
)
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column():
# 1) Image upload component
upload_image = gr.Image(
label="Input image",
type="filepath"
)
# 2) Radio for choosing 1× / 2× / 4× upscaling
upscale_radio = gr.Radio(
choices=["1x", "2x", "4x"],
value="2x",
show_label=False
)
# 3) Two sliders for normalized center (0..1)
center_x = gr.Slider(
label="Center X (normalized)",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.5
)
center_y = gr.Slider(
label="Center Y (normalized)",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.5
)
# 4) Button to launch inference
run_button = gr.Button("Chain-of-Zoom it")
# 5) Preview (512×512 + four truly nested boxes)
preview_with_box = gr.Image(
label="Preview (512×512 with nested boxes)",
type="pil",
interactive=False
)
with gr.Column():
# 6) Gallery to display multiple output images
output_gallery = gr.Gallery(
label="Inference Results",
show_label=True,
elem_id="gallery",
columns=[2], rows=[2]
)
examples = gr.Examples(
# List of example-rows. Each row is [input_image, scale, cx, cy]
examples=[["samples/0479.png", "4x", 0.5, 0.5], ["samples/0064.png", "4x", 0.5, 0.5], ["samples/0245.png", "4x", 0.5, 0.5], ["samples/0393.png", "4x", 0.5, 0.5]],
inputs=[upload_image, upscale_radio, center_x, center_y],
outputs=[output_gallery],
fn=run_with_upload,
cache_examples=True
)
# ------------------------------------------------------------------
# CALLBACK #1: update the preview whenever inputs change
# ------------------------------------------------------------------
def update_preview(
img_path: str,
scale_opt: str,
cx: float,
cy: float
) -> Image.Image | None:
"""
If no image uploaded, show blank; otherwise, draw four nested boxes
exactly as the SR pipeline would crop at each recursion.
"""
if img_path is None:
return None
return make_preview_with_boxes(img_path, scale_opt, cx, cy)
upload_image.change(
fn=update_preview,
inputs=[upload_image, upscale_radio, center_x, center_y],
outputs=[preview_with_box],
show_api=False
)
upscale_radio.change(
fn=update_preview,
inputs=[upload_image, upscale_radio, center_x, center_y],
outputs=[preview_with_box],
show_api=False
)
center_x.change(
fn=update_preview,
inputs=[upload_image, upscale_radio, center_x, center_y],
outputs=[preview_with_box],
show_api=False
)
center_y.change(
fn=update_preview,
inputs=[upload_image, upscale_radio, center_x, center_y],
outputs=[preview_with_box],
show_api=False
)
# ------------------------------------------------------------------
# CALLBACK #2: on button‐click, run the SR pipeline
# ------------------------------------------------------------------
run_button.click(
fn=run_with_upload,
inputs=[upload_image, upscale_radio, center_x, center_y],
outputs=[output_gallery]
)
# ------------------------------------------------------------------
# START THE GRADIO SERVER
# ------------------------------------------------------------------
demo.queue()
demo.launch(share=True, mcp_server=True)
|