diffusion: target: pl_trainer.instruct_p2p_video.InstructP2PVideoTrainerTemporalText params: beta_schedule_args: beta_schedule: scaled_linear num_train_timesteps: 1000 beta_start: 0.00085 beta_end: 0.012 clip_sample: false thresholding: false prediction_type: epsilon loss_fn: l2 optim_args: lr: 1e-5 unet_init_weights: #! 注意一下, 完全可以从iv2v的ckpt开始train - unet/diffusion_pytorch_model.safetensors # iclight, unet, sf tensor - pretrained_models/Motion_Module/mm_sd_v15.ckpt # motion module, 推测加载的是animatediff的 - pretrained_models/iclight/iclight_sd15_fc.safetensors # iclight lora weights base_path: /mnt/petrelfs/fangye/.cache/huggingface/hub/models--stablediffusionapi--realistic-vision-v51/snapshots/19e3643d7d963c156d01537188ec08f0b79a514a # vae_init_weights: pretrained_models/instruct_pix2pix/vqvae.ckpt # text_model_init_weights: pretrained_models/instruct_pix2pix/text.ckpt #! 这两个可以直接设为None, 从from_pretrained中加载 scale_factor: 0.18215 guidance_scale: 5 # not used ddim_sampling_steps: 20 text_cfg: 7.5 img_cfg: 1.2 cond_image_dropout: 0.1 prompt_type: edit_prompt hdr_train: True unet: target: modules.video_unet_temporal.unet.UNet3DConditionModel params: in_channels: 4 #! change:8->12 iclight 改为12 注意一下... out_channels: 4 act_fn: silu attention_head_dim: 8 block_out_channels: - 320 - 640 - 1280 - 1280 cross_attention_dim: 768 down_block_types: - CrossAttnDownBlock3D - CrossAttnDownBlock3D - CrossAttnDownBlock3D - DownBlock3D up_block_types: - UpBlock3D - CrossAttnUpBlock3D - CrossAttnUpBlock3D - CrossAttnUpBlock3D downsample_padding: 1 layers_per_block: 2 mid_block_scale_factor: 1 norm_eps: 1e-05 norm_num_groups: 32 sample_size: 64 use_motion_module: true #!!! 这边test iclight的时候可以不用motion module 即False motion_module_resolutions: - 1 - 2 - 4 - 8 motion_module_mid_block: false motion_module_decoder_only: false motion_module_type: Vanilla motion_module_kwargs: num_attention_heads: 8 num_transformer_block: 1 attention_block_types: - Temporal_Self - Temporal_Self temporal_position_encoding: true temporal_position_encoding_max_len: 32 temporal_attention_dim_div: 1 text_model: target: modules.openclip.modules.FrozenCLIPEmbedder params: freeze: true