Spaces:
Running
on
Zero
Running
on
Zero
title: RelightVid | |
emoji: π₯ | |
colorFrom: red | |
colorTo: yellow | |
sdk: gradio | |
sdk_version: 5.23.3 | |
app_file: app.py | |
license: mit | |
<!-- # <img src="assets/icon.png" style="vertical-align: -14px;" :height="50px" width="50px"> RelightVid --> | |
# RelightVid | |
**[RelightVid: Temporal-Consistent Diffusion Model for Video Relighting](https://arxiv.org/abs/2501.16330)** | |
</br> | |
[Ye Fang](https://github.com/Aleafy)\*, | |
[Zeyi Sun](https://github.com/SunzeY)\*, | |
[Shangzhan Zhang](https://zhanghe3z.github.io/), | |
[Tong Wu](https://wutong16.github.io/), | |
[Yinghao Xu](https://justimyhxu.github.io/), | |
[Pan Zhang](https://panzhang0212.github.io/), | |
[Jiaqi Wang](https://myownskyw7.github.io/), | |
[Gordon Wetzstein](https://web.stanford.edu/~gordonwz/), | |
[Dahua Lin](http://dahua.site/) | |
<p style="font-size: 0.6em; margin-top: -1em">*Equal Contribution</p> | |
<p align="center"> | |
<a href="https://arxiv.org/abs/2501.16330"><img src="https://img.shields.io/badge/arXiv-Paper-<color>"></a> | |
<a href="https://sunzey.github.io/Make-it-Real"><img src="https://img.shields.io/badge/Project-Website-red"></a> | |
<a href="https://www.youtube.com/watch?v=_j-t8592GCM"><img src="https://img.shields.io/static/v1?label=Demo&message=Video&color=orange"></a> | |
<a href="" target='_blank'> | |
<img src="https://visitor-badge.laobi.icu/badge?page_id=Aleafy.RelightVid&left_color=gray&right_color=blue"> | |
</a> | |
</p> | |
 | |
## π News | |
<!-- π [2024/6/8] We release our [inference pipeline of Make-it-Real](#β‘-quick-start), including material matching and generation of albedo-only 3D objects. | |
π [2024/6/8] [Material library annotations](#π¦-data-preparation) generated by GPT-4V and [data engine](#β‘-quick-start) are released! --> | |
β¨ [2025/3/12] The [inference code](xxx), [project page](xxx) and [huggingface demo](xxx) are released! | |
β¨ [2025/1/27] We release the [paper](https://arxiv.org/abs/2501.16330) of RelightVid! | |
## π‘ Highlights | |
- π₯ We first demonstrate that **GPT-4V** can effectively **recognize and describe materials**, allowing our model to precisely identifies and aligns materials with the corresponding components of 3D objects. | |
- π₯ We construct a **Material Library** containing thousands of materials with highly | |
detailed descriptions readily for MLLMs to look up and assign. | |
- π₯ **An effective pipeline** for texture segmentation, material identification and matching, enabling the high-quality application of materials to | |
3D assets. | |
## π¨βπ» Todo | |
- [ ] Evaluation for Existed and Model-Generated Assets (both code & test assets) | |
- [ ] More Interactive Demos (huggingface, jupyter) | |
- [x] Make-it-Real Pipeline Inference Code | |
- [x] Highly detailed Material Library annotations (generated by GPT-4V) | |
- [x] Paper and Web Demos | |
## πΎ Installation | |
```bash | |
git clone https://github.com/Aleafy/RelightVid.git | |
cd RelightVid | |
conda create -n relitv python=3.10 | |
conda activate relitv | |
pip install torch==2.1.2 torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cu118 | |
pip install -r requirements.txt | |
``` | |
## π¦ Data Preparation | |
1. **Annotations**: in `data/material_lib/annotations` [folder](data/material_lib/annotations), include: | |
- Highly-detailed descriptions by GPT-4V: offering thorough descriptions of the materialβs visual characteristics and rich semantic information. | |
- Category-tree: Divided into a hierarchical structure with coarse and fine granularity, it includes over 80 subcategories. | |
2. **PBR Maps**: You can download the complete PBR data collection at [Huggingface](https://huggingface.co/datasets/gvecchio/MatSynth/tree/main), or download the data used in our project at [OpenXLab](https://openxlab.org.cn/datasets/YeFang/MatSynth/tree/main) (Recommended). (If you have any questions, please refer to [issue#5](https://github.com/Aleafy/Make_it_Real/issues/5)) | |
3. **Material Images(optinal)**: You can download the material images file [here](https://drive.google.com/file/d/1ob7CV6JiaqFyjuCzlmSnBuNRkzt2qMSG/view?usp=sharing), to check and visualize the material appearance. | |
<pre> | |
Make_it_Real | |
βββ data | |
βββ material_lib | |
βββ annotations | |
βββ mat_images | |
βββ pbr_maps | |
βββ train | |
βββ Ceremic | |
βββ Concrete | |
βββ ... | |
βββ Wood | |
</pre> | |
## β‘ Quick Start | |
#### Inference | |
```bash | |
python main.py --obj_dir <object_dir> --exp_name <unique_exp_name> --api_key <your_own_gpt4_api_key> | |
``` | |
- To ensure proper network connectivity for GPT-4V, add proxy environment settings in [main.py](https://github.com/Aleafy/Make_it_Real/blob/feb3563d57fbe18abbff8d4abfb48f71cc8f967b/main.py#L18) (optional). Also, please verify the reachability of your [API host](https://github.com/Aleafy/Make_it_Real/blob/feb3563d57fbe18abbff8d4abfb48f71cc8f967b/utils/gpt4_query.py#L68). | |
- Result visualization (blender engine) is located in the `output/refine_output` dir. You can compare the result with that in `output/ori_output`. | |
#### Annotation Engine | |
```bash | |
cd scripts/gpt_anno | |
python gpt4_query_mat.py | |
``` | |
`Note`: Besides functinoning as annotation engine, you can also use this code ([gpt4_query_mat.py](https://github.com/Aleafy/Make_it_Real/blob/main/scripts/gpt_anno/gpt4_query_mat.py)) to test the GPT-4V connection simply. | |
<!-- [annotation code](scripts/gpt_anno) --> | |
<!-- #### Evalutation --> | |
## β€οΈ Acknowledgments | |
- [MatSynth](https://huggingface.co/datasets/gvecchio/MatSynth/tree/main): a Physically Based Rendering (PBR) materials dataset, which offers extensive high-resolusion tilable pbr maps to look up. | |
- [TEXTure](https://github.com/TEXTurePaper/TEXTurePaper): Wonderful text-guided texture generation model, and the codebase we built upon. | |
- [SoM](https://som-gpt4v.github.io/): Draw visual cues on images to facilate GPT-4V query better. | |
- [Material Palette](https://github.com/astra-vision/MaterialPalette): Excellent exploration of material extraction and generation, offers good insights and comparable setting. | |
## βοΈ Citation | |
If you find our work helpful for your research, please consider giving a star β and citation π | |
```bibtex | |
@misc{fang2024makeitreal, | |
title={Make-it-Real: Unleashing Large Multimodal Model for Painting 3D Objects with Realistic Materials}, | |
author={Ye Fang and Zeyi Sun and Tong Wu and Jiaqi Wang and Ziwei Liu and Gordon Wetzstein and Dahua Lin}, | |
year={2024}, | |
eprint={2404.16829}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CV} | |
} | |
``` | |