RelightVid / pl_trainer /instruct_p2p_video.py
aleafy's picture
Start fresh
0a63786
raw
history blame
44.2 kB
'''
Use pretrained instruct pix2pix model but add additional channels for reference modification
'''
import torch
from .diffusion import DDIMLDMTextTraining
from einops import rearrange
from modules.video_unet_temporal.resnet import InflatedConv3d
from safetensors.torch import load_file
import torch.nn.functional as F
from torch import nn
import cv2
from torch.hub import download_url_to_file
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.fc1 = nn.Linear(3072, 4096)
self.fc2 = nn.Linear(4096, 4096)
self.fc3 = nn.Linear(4096, 4096)
self.fc4 = nn.Linear(4096, 2304)
self.leaky_relu = nn.LeakyReLU(negative_slope=0.01) # 设置Leaky ReLU的负斜率
def forward(self, x):
x = self.leaky_relu(self.fc1(x))
x = self.leaky_relu(self.fc2(x))
x = self.leaky_relu(self.fc3(x))
x = self.fc4(x)
return x
# class CombineMLP(nn.Module):
# def __init__(self, input_dim=128, output_dim=64, hidden_dim=128):
# """
# 构造一个 5 层 MLP 网络。
# :param input_dim: 输入的特征维度,默认 128
# :param output_dim: 输出的特征维度,默认 64
# :param hidden_dim: 隐藏层维度,默认 128
# """
# super(CombineMLP, self).__init__()
# # 定义 5 层 MLP
# self.fc1 = nn.Linear(input_dim, hidden_dim) #()
# self.fc2 = nn.Linear(hidden_dim, hidden_dim)
# self.fc3 = nn.Linear(hidden_dim, hidden_dim)
# self.fc4 = nn.Linear(hidden_dim, hidden_dim)
# self.fc5 = nn.Linear(hidden_dim, output_dim) # 最后一层映射到 64
# # 定义激活函数
# # self.activation = nn.ReLU()
# self.activation = nn.LeakyReLU(negative_slope=0.01) # 默认负斜率为 0.01
# def forward(self, x1, x2):
# """
# 前向传播,支持两个输入 x1 和 x2
# :param x1: 第一个输入,形状 (B, 64)
# :param x2: 第二个输入,形状 (B, 64)
# :return: 输出特征,形状 (B, 64)
# """
# # 将两个输入拼接在一起
# x = torch.cat([x1, x2], dim=-1) # 拼接后形状为 (B, 128)
# # 依次通过 5 层 MLP 和激活函数
# x = self.activation(self.fc1(x))
# x = self.activation(self.fc2(x))
# x = self.activation(self.fc3(x))
# x = self.activation(self.fc4(x))
# x = self.fc5(x) # 最后一层不使用激活函数(根据需求)
# return x
class CombineMLP(nn.Module):
def __init__(self, input_dim=4*64*64*2, output_dim=4*64*64, hidden_dim=128, num_layers=5):
"""
构造一个 5 层 MLP 网络。
:param input_dim: 输入的特征维度,默认 128
:param output_dim: 输出的特征维度,默认 64
:param hidden_dim: 隐藏层维度,默认 128
"""
super(CombineMLP, self).__init__()
# 创建多个隐藏层
layers = []
for i in range(num_layers - 1): # 生成 num_layers-1 个隐藏层
layers.append(nn.Linear(input_dim if i == 0 else hidden_dim, hidden_dim))
layers.append(nn.ReLU())
# 输出层
layers.append(nn.Linear(hidden_dim, output_dim))
# 将层组合成一个模块
self.mlp = nn.Sequential(*layers)
def forward(self, x1, x2):
"""
前向传播,支持两个输入 x1 和 x2
:param x1: 第一个输入,形状 (1,16,4,64,64)
:param x2: 第二个输入,形状 (1,16,4,64,64)
:return: 输出特征,形状 (1,16,4,64,64)
"""
# import pdb; pdb.set_trace()
# 将两个输入拼接在一起
x = torch.cat([x1, x2], dim=2) # 拼接后形状为 (1,16,8,64,64)
x = torch.flatten(x, start_dim=2) # Flatten to shape (batch_size, 16, 8*64*64)
x = self.mlp(x) # Apply MLP 1,16,16384
x = x.reshape(x.size(0), x.size(1), 4, 64, 64) # Reshape back to (1, 16, 4, 64, 64)
return x
class HDRCtrlModeltmp(nn.Module):
def __init__(self):
super(HDRCtrlModel, self).__init__()
# 定义卷积层
self.conv_layer1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, stride=4, padding=1)
self.conv_layer2 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, stride=2, padding=1)
# 定义 MLP 模型
self.mlp = MLP()
def decompose_hdr(self, hdr_latents):
batch_size, channels, height, width = hdr_latents.shape
device = hdr_latents.device # 获取设备信息
# 生成 4×4 掩码 (batch_size, 1, 4, 4)
mask_small = torch.rand(batch_size, 1, 4, 4, device=device) # 从均匀分布生成随机掩码
# 将掩码调整为与输入相同的大小 (batch_size, 1, height, width)
mask = torch.nn.functional.interpolate(mask_small, size=(height, width), mode='bilinear', align_corners=False)
# 保持连续值,不进行二值化 #! 注意此步操作, 注意可视化 random mask的结果... 首先可以可视化mask, 其次可视化
mask = mask.expand(-1, channels, -1, -1) # 扩展掩码通道数以匹配 hdr_latents 的形状
# 应用 mask 生成 L1 和 L2
hdr_latents_1 = hdr_latents * mask # L1 = 掩码部分
hdr_latents_2 = hdr_latents * (1 - mask) # L2 = 非掩码部分
return hdr_latents_1, hdr_latents_2
def forward(self, hdr_latents):
# import pdb; pdb.set_trace()
# todo: mask get hdr1, hdr2; input hdr_latents(实际上暂时是ldr)
# 输入的形状为 (1, 16, 3, 256, 512),去掉多余的维度
# import pdb; pdb.set_trace()
hdr_latents = hdr_latents.squeeze(0) # 变成 (16, 3, 256, 512)
batch_size = hdr_latents.shape[0]
# 转换为 NCHW 形式: (batch, channels, height, width) 输入之前numpy2tensor已经permute过了
# hdr_latents = hdr_latents.permute(0, 3, 1, 2) #! 注意一下to tensor? (如何进行归一化的) 的时候已经
# 进行卷积操作
conv_output = self.conv_layer1(hdr_latents) #! 注意更改此处卷积!!!
conv_output = self.conv_layer2(conv_output) # (16, 3, 32, 64)
# 截取前 32 列,得到最终形状 (16, 3, 32, 32)
hdr_latents = conv_output[:, :, :, :32]
# todo: decompose hdr
hdr_latents_1, hdr_latents_2 = self.decompose_hdr(hdr_latents) # [16, 3, 32, 32], [16, 3, 32, 32]
# 将输出展平,准备输入到 MLP 中
hdr_latents = hdr_latents.reshape(hdr_latents.size(0), -1) # [16, 3072]
hdr_latents_1 = hdr_latents_1.reshape(hdr_latents_1.size(0), -1) # [16, 3072]
hdr_latents_2 = hdr_latents_2.reshape(hdr_latents_2.size(0), -1)
# 传递给 MLP
hdr_latents = self.mlp(hdr_latents) #(16, 2304) 3072 -> 2304
hdr_latents_1 = self.mlp(hdr_latents_1)
hdr_latents_2 = self.mlp(hdr_latents_2)
# 重新调整输出的形状
hdr_latents = hdr_latents.reshape(batch_size, 3, 768) # reshape 输出为 (16, 3, 768)
hdr_latents_1 = hdr_latents_1.reshape(batch_size, 3, 768)
hdr_latents_2 = hdr_latents_2.reshape(batch_size, 3, 768)
return hdr_latents, hdr_latents_1, hdr_latents_2
class HDRCtrlModel(nn.Module):
def __init__(self):
super(HDRCtrlModel, self).__init__()
# 定义卷积层
self.conv_layer1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, stride=4, padding=1)
self.conv_layer2 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, stride=2, padding=1)
# 定义 MLP 模型
self.mlp = MLP()
def decompose_hdr(self, hdr_latents): # hdr_latents: 16,3,32,32 可以可视化一下这部分代码...
batch_size, channels, height, width = hdr_latents.shape
device = hdr_latents.device # 获取设备信息
# 生成 4×4 掩码 (batch_size, 1, 4, 4)
mask_small = torch.rand(batch_size, 1, 4, 4, device=device) # 从均匀分布生成随机掩码
threshold = 0.5 # 调节阈值,增加黑色部分比例
mask_small = (mask_small > threshold).float()
# 将掩码调整为与输入相同的大小 (batch_size, 1, height, width) 16,1,32,32
mask = torch.nn.functional.interpolate(mask_small, size=(height, width), mode='bilinear', align_corners=False)
# import pdb; pdb.set_trace()
# 保持连续值,不进行二值化 #! 注意此步操作, 注意可视化 random mask的结果... 首先可以可视化mask, 其次可视化
mask = mask.expand(-1, channels, -1, -1) # 扩展掩码通道数以匹配 hdr_latents 的形状
# 应用 mask 生成 L1 和 L2
hdr_latents_1 = hdr_latents * mask # L1 = 掩码部分
hdr_latents_2 = hdr_latents * (1 - mask) # L2 = 非掩码部分
return hdr_latents_1, hdr_latents_2
def blur_image(self, hdr_latents):
# 高斯模糊, 输入 (16,3,256,256)
processed_images = []
kernel_size = (15, 15)
sigmaX = 10
# 对每张图像进行处理
for i in range(hdr_latents.size(0)): # 遍历16张图像
# 获取第i张图像
image = hdr_latents[i].permute(1, 2, 0).cpu().numpy() # 将形状变为 (256, 256, 3)
# 进行高斯模糊
blurred_image = cv2.GaussianBlur(image, kernel_size, sigmaX)
# 将图像缩放到 (32, 32, 3)
resized_image = cv2.resize(blurred_image, (32, 32), interpolation=cv2.INTER_AREA)
# 将处理后的图像从 numpy 数组转换回 tensor
resized_image_tensor = torch.tensor(resized_image, dtype=torch.uint8, device=hdr_latents.device).permute(2, 0, 1) # 转回 (3, 32, 32)
# 将处理后的图像添加到列表中
processed_images.append(resized_image_tensor)
# 将列表中的所有图像堆叠成一个 tensor
processed_images_tensor = torch.stack(processed_images) # 形状为 (16, 3, 32, 32)
return processed_images_tensor
def normalize_hdr(self, img):
img = img / 255.0
return img * 2 -1
def forward(self, hdr_latents):
# import pdb; pdb.set_trace()
# todo: mask get hdr1, hdr2; input hdr_latents(实际上暂时是ldr)
# 输入的形状为 (n, 16, 3, 256, 256),去掉多余的维度
# import pdb; pdb.set_trace()
# hdr_latents = hdr_latents.squeeze(0) # 变成 (16, 3, 256, 256)
batch_size_ori = hdr_latents.shape[0]
# frame_num = hdr_latents.shape[1]
hdr_latents = rearrange(hdr_latents, 'b f c h w -> (b f) c h w')
batch_size = hdr_latents.shape[0]
# batch_size = hdr_latents.shape[0]
# 转换为 NCHW 形式: (batch, channels, height, width) 输入之前numpy2tensor已经permute过了
# 高斯模糊
hdr_latents = self.blur_image(hdr_latents) #(16,3,32,32) 可视化打印一下!
# import pdb; pdb.set_trace()
# todo: decompose hdr
hdr_latents_1, hdr_latents_2 = self.decompose_hdr(hdr_latents) # [16, 3, 32, 32], [16, 3, 32, 32]
# todo: 加一步 normalize /255 -> -1,1
hdr_latents, hdr_latents_1, hdr_latents_2 = self.normalize_hdr(hdr_latents), self.normalize_hdr(hdr_latents_1), self.normalize_hdr(hdr_latents_2)
# import pdb; pdb.set_trace()
# 将输出展平,准备输入到 MLP 中
hdr_latents = hdr_latents.reshape(hdr_latents.size(0), -1) # [16, 3072]
hdr_latents_1 = hdr_latents_1.reshape(hdr_latents_1.size(0), -1) # [16, 3072]
hdr_latents_2 = hdr_latents_2.reshape(hdr_latents_2.size(0), -1)
# 传递给 MLP
hdr_latents = self.mlp(hdr_latents) #(16, 2304) 3072 -> 2304
hdr_latents_1 = self.mlp(hdr_latents_1)
hdr_latents_2 = self.mlp(hdr_latents_2)
# 重新调整输出的形状
hdr_latents = hdr_latents.reshape(batch_size, 3, 768) # reshape 输出为 (16*n, 3, 768)
hdr_latents_1 = hdr_latents_1.reshape(batch_size, 3, 768)
hdr_latents_2 = hdr_latents_2.reshape(batch_size, 3, 768)
hdr_latents = rearrange(hdr_latents, '(b f) n c -> b f n c', b=batch_size_ori)
hdr_latents_1 = rearrange(hdr_latents_1, '(b f) n c -> b f n c', b=batch_size_ori)
hdr_latents_2 = rearrange(hdr_latents_2, '(b f) n c -> b f n c', b=batch_size_ori)
#! 两个细节: 1. 仅有ldr, 需不需要concat hdr或线性变换 2. mask不同帧不一致
return hdr_latents, hdr_latents_1, hdr_latents_2 # 3 x (b,16,3,768)
class InstructP2PVideoTrainer(DDIMLDMTextTraining):
def __init__(
self, *args,
cond_image_dropout=0.1,
cond_text_dropout=0.1,
cond_hdr_dropout=0.1,
prompt_type='output_prompt',
text_cfg=7.5,
img_cfg=1.2,
hdr_cfg=7.5,
hdr_rate=0.1,
ic_condition='bg',
hdr_train=False,
**kwargs
):
super().__init__(*args, **kwargs)
self.hdr_train = hdr_train
if self.hdr_train:
self.hdr_encoder = HDRCtrlModel()
self.hdr_encoder = self.hdr_encoder.to(self.unet.device)
self.mlp = CombineMLP()
self.cond_hdr_dropout = cond_hdr_dropout
self.hdr_rate = hdr_rate
self.cond_image_dropout = cond_image_dropout
self.cond_text_dropout = cond_text_dropout
assert ic_condition in ['fg', 'bg']
assert prompt_type in ['output_prompt', 'edit_prompt', 'mixed_prompt']
self.prompt_type = prompt_type
self.ic_condition = ic_condition
self.text_cfg = text_cfg
self.img_cfg = img_cfg
self.hdr_cfg = hdr_cfg
#! 开启xformers训练设置
# self.unet.enable_xformers_memory_efficient_attention()
# self.unet.enable_gradient_checkpointing()
def encode_text(self, text):
with torch.cuda.amp.autocast(dtype=torch.float16):
encoded_text = super().encode_text(text)
return encoded_text
def encode_image_to_latent(self, image):
# with torch.cuda.amp.autocast(dtype=torch.float16):
latent = super().encode_image_to_latent(image)
return latent
# @torch.cuda.amp.autocast(dtype=torch.float16)
@torch.no_grad()
def get_prompt(self, batch, mode):
# if mode == 'train':
# if self.prompt_type == 'output_prompt':
# prompt = batch['output_prompt']
# elif self.prompt_type == 'edit_prompt': # training的时候是edit prompt
# prompt = batch['edit_prompt']
# elif self.prompt_type == 'mixed_prompt':
# if int(torch.rand(1)) > 0.5:
# prompt = batch['output_prompt']
# else:
# prompt = batch['edit_prompt']
# else:
# prompt = batch['output_prompt']
prompt = batch['text_prompt']
if not self.hdr_train: #! 如果hdr后续加进来text了, 还是需要?
if torch.rand(1).item() < self.cond_text_dropout:
prompt = 'change the background'
cond_text = self.encode_text(prompt)
if mode == 'train':
if torch.rand(1).item() < self.cond_text_dropout:
cond_text = torch.zeros_like(cond_text)
# import pdb; pdb.set_trace()
return cond_text
# @torch.cuda.amp.autocast(dtype=torch.float16)
@torch.no_grad()
def encode_image_to_latent(self, image):
b, f, c, h, w = image.shape
image = rearrange(image, 'b f c h w -> (b f) c h w')
latent = super().encode_image_to_latent(image)
latent = rearrange(latent, '(b f) c h w -> b f c h w', b=b)
return latent
# @torch.cuda.amp.autocast(dtype=torch.float16)
@torch.no_grad()
def decode_latent_to_image(self, latent):
b, f, c, h, w = latent.shape
latent = rearrange(latent, 'b f c h w -> (b f) c h w')
image = []
for latent_ in latent:
image_ = super().decode_latent_to_image(latent_[None])
image.append(image_.sample) #! 注意一下这里 之前没报过错吗; -> 之前不是一个类
image = torch.cat(image, dim=0)
# image = super().decode_latent_to_image(latent)
image = rearrange(image, '(b f) c h w -> b f c h w', b=b)
return image
@torch.no_grad()
def get_cond_image(self, batch, mode):
# import pdb; pdb.set_trace()
cond_fg_image = batch['fg_video'] # 这边condition 就是 input_video了, 估计是concat或者ctrlnet
cond_fg_image = self.encode_image_to_latent(cond_fg_image)
if self.ic_condition == 'bg':
cond_bg_image = batch['bg_video']
if torch.all(cond_bg_image == 0):
cond_bg_image = torch.zeros_like(cond_fg_image) #! 背景一定概率为0, 置为0.3
else:
cond_bg_image = self.encode_image_to_latent(cond_bg_image)
cond_image = torch.cat((cond_fg_image, cond_bg_image), dim=2) #(1,16,8,64,64)
else:
cond_image = cond_fg_image
# test code: 可视化代码
# from PIL import Image
# Image.fromarray(((batch['input_video'] + 1) / 2 * 255).byte()[0,0].permute(1,2,0).cpu().numpy()).save('img1.png')
# ip2p does not scale cond image, so we unscale the cond image
# cond_image = self.encode_image_to_latent(cond_image) / self.scale_factor # 额 就是一个vae encode,没有缩放;这边不进行缩放吗? 啥意思呢
if mode == 'train':
# if int(torch.rand(1)) < self.cond_image_dropout: # 0.1的概率随机初始化, 应该是为了保障一个鲁棒性 难怪有的时候是全0, 不是代码的bug #! 艹 bug, 这么久才发现....
if torch.rand(1).item() < self.cond_image_dropout:
cond_image = torch.zeros_like(cond_image)
return cond_image
@torch.no_grad()
def get_diffused_image(self, batch, mode):
# import pdb; pdb.set_trace()
x = batch['tgt_video'] # 这边编辑的时候, 具体加噪和去噪的gt, 整个这套流程都是以编辑后, 即edited video作为输入
# from PIL import Image
# Image.fromarray(((batch['edited_video'] + 1) / 2 * 255).byte()[0,0].permute(1,2,0).cpu().numpy()).save('img2.png')
b, *_ = x.shape
x = self.encode_image_to_latent(x) # (1, 16, 4, 32, 32), 经过了vae encode
eps = torch.randn_like(x)
if mode == 'train':
t = torch.randint(0, self.num_timesteps, (b,), device=x.device).long()
else:
t = torch.full((b,), self.num_timesteps-1, device=x.device, dtype=torch.long)
x_t = self.add_noise(x, t, eps) # 加噪t步长 eps表示高斯噪声, 和scheduler的加噪
if self.prediction_type == 'epsilon':
return x_t, eps, t
else:
return x_t, x, t
@torch.no_grad()
def get_hdr_image(self, batch, mode):
x = batch['ldr_video'] # todo (16,3,256,512), float, tensor, device -> (1,16,3,256,256) 注意此时仅有ldr
# import pdb; pdb.set_trace()
hdr_latents, hdr_latents_1, hdr_latents_2 = self.hdr_encoder(x)
if mode == 'train': #! 考虑一下这个开不开, 因为后面要拉consistency loss
if torch.rand(1).item() < self.cond_hdr_dropout:
hdr_latents = torch.zeros_like(hdr_latents)
hdr_latents_1 = torch.zeros_like(hdr_latents_1)
hdr_latents_2 = torch.zeros_like(hdr_latents_2)
return hdr_latents, hdr_latents_1, hdr_latents_2
@torch.no_grad() # batch中需要加载mask
def get_mask(self, batch, mode, target):
# (1,16,1,512,512)
# import pdb; pdb.set_trace()
mask = batch['fg_mask'] # todo 返回mask (n,16,1,512,512)
bs = mask.shape[0]
target_height, target_width = target.shape[-2:] #(n,16,3,64,64)
mask = rearrange(mask, 'b f c h w -> (b f) c h w')
resized_mask = F.interpolate(mask, size=(target_height, target_width), mode='bilinear', align_corners=False)
# resized_mask = resized_mask.unsqueeze(0)
resized_mask = rearrange(resized_mask, '(b f) c h w -> b f c h w', b=bs)
if target.shape[2] != resized_mask.shape[2]:
resized_mask = resized_mask.expand(-1, -1, target.shape[2], -1, -1) # 匹配目标通道数
return resized_mask
@torch.no_grad()
def process_batch(self, batch, mode): #! 可视化这边的image, 查看问题出在哪了。。。 √, 应该是randn_drop的事
# import pdb; pdb.set_trace()
cond_image = self.get_cond_image(batch, mode) # 把输入的src image进行一个编码, 这边只有vae的encode, 且没有乘缩放的系数(ip2p本身没乘...)
diffused_image, target, t = self.get_diffused_image(batch, mode) # diffused_image: 经过了vae encode, 和scheduler的加噪,标准的降噪输入
# target: 这边是epsilon目标, 因此还是拉成epsilon的损失;t: 训练阶段是随机的一个数值, 推理阶段一般都是1000
prompt = self.get_prompt(batch, mode)
model_kwargs = {
'encoder_hidden_states': prompt
}
# import pdb; pdb.set_trace()
if self.hdr_train:
hdr_image, hdr_image_1, hdr_image_2 = self.get_hdr_image(batch, mode) #(16,3,768)
fg_mask = self.get_mask(batch, mode, target) # 把原图像前景mask resize到target大小
model_kwargs = {
'encoder_hidden_states': {'hdr_latents': hdr_image, 'encoder_hidden_states': prompt, 'hdr_latents_1': hdr_image_1, 'hdr_latents_2': hdr_image_2, 'fg_mask': fg_mask}
}
return {
'diffused_input': diffused_image, # (1, 16, 4, 64, 64), 经过了vae encode, 和scheduler的加噪
'condition': cond_image, # 把输入的src image进行一个编码, 这边只有vae的encode, 且没有乘缩放的系数 (1,16,8,64,64)
'target': target, # 这个是加到tgt video的高斯噪声
't': t, # 0~1000的一个时刻
'model_kwargs': model_kwargs, # 这边就是一个text_hidden_states
}
def training_step(self, batch, batch_idx): #! 注意一下仅仅训motion layer
# import pdb; pdb.set_trace()
processed_batch = self.process_batch(batch, mode='train') #(1,16,3,256,256), 读取的序列化图片, 仅仅做了一个归一化操作
diffused_input = processed_batch['diffused_input'] # (1,16,4,64,64), edit images, 经过了vae encode, 和scheduler的加噪
condition = processed_batch['condition'] # (1,16,8,64,64) 把输入的src images进行一个编码, 这边只有vae的encode, 且没有乘缩放的系数
target = processed_batch['target'] # (1,16,4,64,64), target是加入的高斯噪声
t = processed_batch['t'] # [257], 一个0~1000的随机时刻
model_kwargs = processed_batch['model_kwargs'] # dict, 仅包含一项: encoder_hidden_states, [1, 77, 768] text_hidden_states
model_input = torch.cat([diffused_input, condition], dim=2) # b, f, c, h, w [1,16,8,32,32] 这边是做的concat, 很多edit文章经典操作, 把两个东西concat起来
#! 半精度
# model_input = model_input.float()
# model_kwargs['encoder_hidden_states'] = model_kwargs['encoder_hidden_states'].half()
model_input = rearrange(model_input, 'b f c h w -> b c f h w') # [1,8,16,32,32]
pred = self.unet(model_input, t, **model_kwargs).sample # (1,4,16,64,64) #!
pred = rearrange(pred, 'b c f h w -> b f c h w') # (1,16,4,64,64) #!
if not self.hdr_train:
loss = self.get_loss(pred, target, t) # 0.320
else:
fg_mask = model_kwargs['encoder_hidden_states']['fg_mask']
loss = self.get_hdr_loss(fg_mask, pred, target)
### add consistency loss ###
# todo: 三个相同的model_input, 不同的model_kwargs (注意stack到一起, attn里面的逻辑也得改...)
# if self.hdr_train:
# fg_mask = model_kwargs['encoder_hidden_states']['fg_mask']
# hdr_latents = model_kwargs['encoder_hidden_states']['hdr_latents_1']
# hdr_latents_1 = model_kwargs['encoder_hidden_states']['hdr_latents_1']
# hdr_latents_2 = model_kwargs['encoder_hidden_states']['hdr_latents_2']
# model_input = torch.cat([diffused_input, condition], dim=2)
# model_input = rearrange(model_input, 'b f c h w -> b c f h w')
# model_input_1 = model_input.clone()
# model_input_2 = model_input.clone()
# model_input_all = torch.cat([model_input, model_input_1, model_input_2], dim=0)
# prompt = model_kwargs['encoder_hidden_states']['encoder_hidden_states'] #(1*n,77,768)
# prompt_all = torch.cat([prompt, prompt, prompt], dim=0) #(3*n,77,768)
# # import pdb; pdb.set_trace()
# model_kwargs['encoder_hidden_states']['encoder_hidden_states'] = prompt_all
# # import pdb; pdb.set_trace()
# hdr_latents_all = torch.cat([hdr_latents, hdr_latents_1, hdr_latents_2], dim=0) #(3*n,16,77,768)
# model_kwargs['encoder_hidden_states']['hdr_latents']=hdr_latents_all
# pred_all = self.unet(model_input_all, t, **model_kwargs).sample # (1,4,16,64,64)
# pred_all = rearrange(pred_all, 'b c f h w -> b f c h w')
# pred, pred1, pred2 = pred_all.chunk(3, dim=0)
# loss_ori = self.get_hdr_loss(fg_mask, pred, target)
# # 假设获得了L1, L2
# # hdr_latents_1 = mask(hdr_latents) # 随机构造一个mask + 逻辑矫正
# # model_kwargs['encoder_hidden_states']['hdr_latents']=hdr_latents_1
# # pred1 = self.unet(model_input, t, **model_kwargs).sample # get L1下的预测值 (1,16,4,64,64)
# # pred1 = rearrange(pred1, 'b c f h w -> b f c h w')
# # model_input = torch.cat([diffused_input, condition], dim=2)
# # model_input = rearrange(model_input, 'b f c h w -> b c f h w')
# # # hdr_latents_2 = 1-mask(hdr_latents)
# # model_kwargs['encoder_hidden_states']['hdr_latents']=hdr_latents_2
# # pred2 = self.unet(model_input, t, **model_kwargs).sample # get L2下的预测值
# # pred2 = rearrange(pred2, 'b c f h w -> b f c h w')
# # import pdb; pdb.set_trace()
# pred_combine = self.mlp(pred1, pred2) #! todo: 构造mlp loss 错了!! 搞对一下, 应该需要展平....
# loss_c = self.get_hdr_loss(fg_mask, pred, pred_combine)
# # loss_c = MSELoss(mask*pred, mask*pred_conbine) # todo: change to函数, 逻辑矫正
# loss = loss_ori + self.hdr_rate * loss_c # 设一个系数, 好控制变化
### end ###
self.log('train_loss', loss, sync_dist=True)
latent_pred = self.predict_x_0_from_x_t(pred, t, diffused_input) # (1,16,4,32,32)
image_pred = self.decode_latent_to_image(latent_pred) # 这边相当于是pred_x0了, (1,16,3,256,256)
drop_out = torch.all(condition == 0).item()
res_dict = {
'loss': loss,
'pred': image_pred,
'drop_out': drop_out,
'time': t[0].item()
}
return res_dict
@torch.no_grad()
@torch.cuda.amp.autocast(dtype=torch.bfloat16)
def validation_step(self, batch, batch_idx): # 没写好 可以先pass
# pass
# import pdb; pdb.set_trace()
if not self.hdr_train:
from .inference.inference import InferenceIP2PVideo
inf_pipe = InferenceIP2PVideo(
self.unet,
beta_start=self.scheduler.config.beta_start,
beta_end=self.scheduler.config.beta_end,
beta_schedule=self.scheduler.config.beta_schedule,
num_ddim_steps=20
)
# import pdb; pdb.set_trace()
processed_batch = self.process_batch(batch, mode='val')
diffused_input = torch.randn_like(processed_batch['diffused_input']) #(1,16,4,64,64)
condition = processed_batch['condition'] # 这边其实留有一个接口给condition (1,16,8,64,64)
img_cond = condition
text_cond = processed_batch['model_kwargs']['encoder_hidden_states']
# import pdb; pdb.set_trace()
res = inf_pipe(
latent = diffused_input,
text_cond = text_cond,
text_uncond = self.encode_text(['']),
img_cond = img_cond,
text_cfg = self.text_cfg,
img_cfg = self.img_cfg,
hdr_cfg = self.hdr_cfg
)
latent_pred = res['latent']
image_pred = self.decode_latent_to_image(latent_pred)
res_dict = {
'pred': image_pred,
}
else:
from .inference.inference import InferenceIP2PVideoHDR
inf_pipe = InferenceIP2PVideoHDR(
self.unet,
beta_start=self.scheduler.config.beta_start,
beta_end=self.scheduler.config.beta_end,
beta_schedule=self.scheduler.config.beta_schedule,
num_ddim_steps=20
)
# import pdb; pdb.set_trace()
processed_batch = self.process_batch(batch, mode='val')
diffused_input = torch.randn_like(processed_batch['diffused_input']) #(1,16,4,64,64)
condition = processed_batch['condition'] # 这边其实留有一个接口给condition (1,16,8,64,64)
model_kwargs = processed_batch['model_kwargs']
img_cond = condition
text_cond = model_kwargs['encoder_hidden_states']['encoder_hidden_states']
hdr_cond = model_kwargs['encoder_hidden_states']['hdr_latents']
# import pdb; pdb.set_trace()
res = inf_pipe(
latent = diffused_input,
text_cond = text_cond,
text_uncond = self.encode_text(['']),
hdr_cond = hdr_cond,
img_cond = img_cond,
text_cfg = self.text_cfg,
img_cfg = self.img_cfg,
)
latent_pred = res['latent']
image_pred = self.decode_latent_to_image(latent_pred)
res_dict = {
'pred': image_pred,
}
return res_dict
def configure_optimizers(self):
# optimizer = torch.optim.AdamW(self.unet.parameters(), lr=self.optim_args['lr'])
import bitsandbytes as bnb
params = []
for name, p in self.unet.named_parameters():
if ('transformer_in' in name) or ('temp_' in name):
# p.requires_grad = True
params.append(p)
else:
pass
# p.requires_grad = False
optimizer = bnb.optim.Adam8bit(params, lr=self.optim_args['lr'], betas=(0.9, 0.999))
return optimizer
def initialize_unet(self, unet_init_weights):
if unet_init_weights is not None:
print(f'INFO: initialize denoising UNet from {unet_init_weights}')
sd = torch.load(unet_init_weights, map_location='cpu')
model_sd = self.unet.state_dict()
# fit input conv size
for k in model_sd.keys():
if k in sd.keys():
pass
else:
# handling temporal layers
if (('temp_' in k) or ('transformer_in' in k)) and 'proj_out' in k:
# print(f'INFO: initialize {k} from {model_sd[k].shape} to zeros')
sd[k] = torch.zeros_like(model_sd[k])
else:
# print(f'INFO: initialize {k} from {model_sd[k].shape} to random')
sd[k] = model_sd[k]
self.unet.load_state_dict(sd)
class InstructP2PVideoTrainerTemporal(InstructP2PVideoTrainer):
def initialize_unet(self, unet_init_weights): # 这边对比上一级来说, 新加的部分在于 rewrite了unet的load函数
if unet_init_weights is not None:
print(f'INFO: initialize denoising UNet from {unet_init_weights}')
sd_init_weights, motion_module_init_weights, iclight_init_weights = unet_init_weights
os.makedirs(sd_init_weights, exist_ok=True)
sd_init_weights, motion_module_init_weights, iclight_init_weights = f'models/{sd_init_weights}', f'models/{motion_module_init_weights}', f'models/{iclight_init_weights}'
if not os.path.exists(sd_init_weights):
url = 'https://huggingface.co/stablediffusionapi/realistic-vision-v51/resolve/main/unet/diffusion_pytorch_model.safetensors'
download_url_to_file(url=url, dst=sd_init_weights)
if not os.path.exists(motion_module_init_weights):
url = 'https://huggingface.co/aleafy/RelightVid/resolve/main/relvid_mm_sd15_fbc.pth'
download_url_to_file(url=url, dst=motion_module_init_weights)
if not os.path.exists(iclight_init_weights):
url = 'https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fbc.safetensors'
download_url_to_file(url=url, dst=iclight_init_weights)
sd = load_file(sd_init_weights) #! 关于加载iclight的unet, 后面再加到yaml里面... 我甚至觉得只要改unet, vae和text其实都差不多
# sd = torch.load(sd_init_weights, map_location='cpu') # 注意debug看看这是啥 + 打印一下原有和加载的keys
if self.unet.use_motion_module:
motion_sd = torch.load(motion_module_init_weights, map_location='cpu')
assert len(sd) + len(motion_sd) == len(self.unet.state_dict()), f'Improper state dict length, got {len(sd) + len(motion_sd)} expected {len(self.unet.state_dict())}' #! 注意一下这行保证了加载的key至少在数量上是对应的; 这行的目的是self.unet是自己定义的 而这两个加载的是别的地方训练的(可能是diffusers中的)
sd.update(motion_sd)
for k, v in self.unet.state_dict().items():
if 'pos_encoder.pe' in k: # 这边是原来iv2v的代码 temporal_position_encoding_max_len, 设置为 32
sd[k] = v # the size of pe may change, 主要是temporal layer的size会发生改变... √ 由于输入的max_len变了
# if 'conv_in.weight' in k: #! tmp, 这里是test一下
# sd[k] = v
else:
assert len(sd) == len(self.unet.state_dict())
self.unet.load_state_dict(sd) # 为什么这里可以完美适配? √
# todo: 更改sd的conv_in.weight的shape到12; 更改函数forward, 支持多个输入cond; iclight的sd_offset加载进去;
unet = self.unet # saVe一下
# 这里是更改conv_in的shape; #! 这边注意一下要改成3D版本的unet
with torch.no_grad():
# new_conv_in = torch.nn.Conv2d(12, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
new_conv_in = InflatedConv3d(12, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
new_conv_in.weight.zero_()
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
new_conv_in.bias = unet.conv_in.bias
unet.conv_in = new_conv_in
###### -- 更改 forward函数 --- #####
# 这里是更改forward函数。 具体调用的部分在main后面,那里也得改
# unet_original_forward = unet.forward
# def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
# c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample) # (1,8,67,120)
# c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0) # (2,8,67,120) 应该是复制一份,用于cfg
# new_sample = torch.cat([sample, c_concat], dim=2) #(2,12,67,120) 这边还是在通道维度上进行的concat #! change 在第二维cat (2,1,12,67,120)
# # todo 这边中间可以加一个f的通道 b,c,f,h,w ; 另一种方式: 对于数据进行改变, 那么上述concat的代码也需要进行变换了...
# # new_sample = new_sample.unsqueeze(2) # (2,12,1,67,120) #! 这里需要change, 要在一输入之前就要更改他的维度, 因此前面concat也需要稍微改一下 不要在forward中增加f维度 (因为要依赖输入)
# new_sample = rearrange(new_sample, 'b f c h w -> b c f h w')
# kwargs['cross_attention_kwargs'] = {}
# # return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
# result = unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
# # return (result[0].squeeze(2),) #! tmp
# return (rearrange(result[0], 'b c f h w -> b f c h w'),)
# unet.forward = hooked_unet_forward
##### -- 更改 forward函数 --- #####
# model_path = '/home/fy/Code/instruct-video-to-video/IC-Light/models/iclight_sd15_fbc.safetensors'
# 这里是加载iclight的lora weight
sd_offset = load_file(iclight_init_weights)
sd_origin = unet.state_dict()
keys = sd_origin.keys()
for k in sd_offset.keys():
sd_origin[k] = sd_origin[k] + sd_offset[k]
# sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
self.unet.load_state_dict(sd_origin, strict=True)
del sd_offset, sd_origin, unet, keys
# print(1)
# todo 试写一下iclight unet的加载方式
# sd = load_file('/home/fy/Code/IC-Light/cache_models/models--stablediffusionapi--realistic-vision-v51/snapshots/19e3643d7d963c156d01537188ec08f0b79a514a/unet/diffusion_pytorch_model.safetensors')
# debug: print参数
# with open('logs/sd_keys.txt', 'w') as f:
# f.write("SD Keys:\n")
# for key in sd_ori.keys():
# f.write(f"{key}\n")
# unet_state_dict = self.unet.state_dict()
# with open('logs/unet_state_dict_keys.txt', 'w') as f:
# f.write("UNet State Dict Keys:\n")
# for key in unet_state_dict.keys():
# f.write(f"{key}\n")
else:
with torch.no_grad():
new_conv_in = InflatedConv3d(12, self.unet.conv_in.out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding)
self.unet.conv_in = new_conv_in
def configure_optimizers(self): # 决定了仅仅训练motion_module的参数 注意一下pl.Trainer独有的函数
import bitsandbytes as bnb
motion_params = []
remaining_params = []
train_names = [] # for debug
for name, p in self.unet.named_parameters():
if ('motion' in name): #! 哦哦 这里决定了哪些参数用于训练... 这里实际训练的只有motion相关参数
motion_params.append(p)
train_names.append(name)
elif ('attentions' in name):
motion_params.append(p)
train_names.append(name)
else:
remaining_params.append(p)
# import pdb; pdb.set_trace()
optimizer = bnb.optim.Adam8bit([
{'params': motion_params, 'lr': self.optim_args['lr']},
], betas=(0.9, 0.999))
return optimizer
class InstructP2PVideoTrainerTemporalText(InstructP2PVideoTrainerTemporal):
def initialize_unet(self, unet_init_weights): # 这边对比上一级来说, 新加的部分在于 rewrite了unet的load函数
if unet_init_weights is not None:
print(f'INFO: initialize denoising UNet from {unet_init_weights}')
sd_init_weights, motion_module_init_weights, iclight_init_weights = unet_init_weights
if self.base_path:
sd_init_weights = f"{self.base_path}/{sd_init_weights}"
if '.safetensors' in sd_init_weights: # .safetensors的加载方式
sd = load_file(sd_init_weights) #! 关于加载iclight的unet, 后面再加到yaml里面... 我甚至觉得只要改unet, vae和text其实都差不多
else: #'.ckpt'场景
sd = torch.load(sd_init_weights, map_location='cpu')
# sd = torch.load(sd_init_weights, map_location='cpu') # 注意debug看看这是啥 + 打印一下原有和加载的keys
if self.unet.use_motion_module:
motion_sd = torch.load(motion_module_init_weights, map_location='cpu')
assert len(sd) + len(motion_sd) == len(self.unet.state_dict()), f'Improper state dict length, got {len(sd) + len(motion_sd)} expected {len(self.unet.state_dict())}' #! 注意一下这行保证了加载的key至少在数量上是对应的; 这行的目的是self.unet是自己定义的 而这两个加载的是别的地方训练的(可能是diffusers中的)
sd.update(motion_sd)
for k, v in self.unet.state_dict().items():
if 'pos_encoder.pe' in k: # 这边是原来iv2v的代码 temporal_position_encoding_max_len, 设置为 32
sd[k] = v # the size of pe may change, 主要是temporal layer的size会发生改变... √ 由于输入的max_len变了
# if 'conv_in.weight' in k: #! tmp, 这里是test一下
# sd[k] = v
else:
assert len(sd) == len(self.unet.state_dict())
self.unet.load_state_dict(sd) # 为什么这里可以完美适配? √
# todo: 更改sd的conv_in.weight的shape到12; 更改函数forward, 支持多个输入cond; iclight的sd_offset加载进去;
unet = self.unet # saVe一下
# 这里是更改conv_in的shape; #! 这边注意一下要改成3D版本的unet
with torch.no_grad():
# new_conv_in = torch.nn.Conv2d(12, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
new_conv_in = InflatedConv3d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
new_conv_in.weight.zero_()
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
new_conv_in.bias = unet.conv_in.bias
unet.conv_in = new_conv_in
# model_path = '/home/fy/Code/instruct-video-to-video/IC-Light/models/iclight_sd15_fbc.safetensors'
# 这里是加载iclight的lora weight
sd_offset = load_file(iclight_init_weights)
sd_origin = unet.state_dict()
keys = sd_origin.keys()
for k in sd_offset.keys():
sd_origin[k] = sd_origin[k] + sd_offset[k]
# sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
self.unet.load_state_dict(sd_origin, strict=True)
del sd_offset, sd_origin, unet, keys
else:
with torch.no_grad():
new_conv_in = InflatedConv3d(8, self.unet.conv_in.out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding)
self.unet.conv_in = new_conv_in