File size: 44,199 Bytes
0a63786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
'''
Use pretrained instruct pix2pix model but add additional channels for reference modification
'''

import torch
from .diffusion import DDIMLDMTextTraining
from einops import rearrange

from modules.video_unet_temporal.resnet import InflatedConv3d
from safetensors.torch import load_file

import torch.nn.functional as F

from torch import nn
import cv2
from torch.hub import download_url_to_file

class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(3072, 4096)
        self.fc2 = nn.Linear(4096, 4096)
        self.fc3 = nn.Linear(4096, 4096)
        self.fc4 = nn.Linear(4096, 2304)
        self.leaky_relu = nn.LeakyReLU(negative_slope=0.01)  # 设置Leaky ReLU的负斜率

    def forward(self, x):
        x = self.leaky_relu(self.fc1(x))
        x = self.leaky_relu(self.fc2(x))
        x = self.leaky_relu(self.fc3(x))
        x = self.fc4(x)
        return x
    
# class CombineMLP(nn.Module):
#     def __init__(self, input_dim=128, output_dim=64, hidden_dim=128):
#         """
#         构造一个 5 层 MLP 网络。
#         :param input_dim: 输入的特征维度,默认 128
#         :param output_dim: 输出的特征维度,默认 64
#         :param hidden_dim: 隐藏层维度,默认 128
#         """
#         super(CombineMLP, self).__init__()
        
#         # 定义 5 层 MLP
#         self.fc1 = nn.Linear(input_dim, hidden_dim) #()
#         self.fc2 = nn.Linear(hidden_dim, hidden_dim)
#         self.fc3 = nn.Linear(hidden_dim, hidden_dim)
#         self.fc4 = nn.Linear(hidden_dim, hidden_dim)
#         self.fc5 = nn.Linear(hidden_dim, output_dim)  # 最后一层映射到 64

#         # 定义激活函数
#         # self.activation = nn.ReLU()
#         self.activation = nn.LeakyReLU(negative_slope=0.01)  # 默认负斜率为 0.01


#     def forward(self, x1, x2):
#         """
#         前向传播,支持两个输入 x1 和 x2
#         :param x1: 第一个输入,形状 (B, 64)
#         :param x2: 第二个输入,形状 (B, 64)
#         :return: 输出特征,形状 (B, 64)
#         """
#         # 将两个输入拼接在一起
#         x = torch.cat([x1, x2], dim=-1)  # 拼接后形状为 (B, 128)

#         # 依次通过 5 层 MLP 和激活函数
#         x = self.activation(self.fc1(x))
#         x = self.activation(self.fc2(x))
#         x = self.activation(self.fc3(x))
#         x = self.activation(self.fc4(x))
#         x = self.fc5(x)  # 最后一层不使用激活函数(根据需求)

#         return x


class CombineMLP(nn.Module):
    def __init__(self, input_dim=4*64*64*2, output_dim=4*64*64, hidden_dim=128, num_layers=5):
        """
        构造一个 5 层 MLP 网络。
        :param input_dim: 输入的特征维度,默认 128
        :param output_dim: 输出的特征维度,默认 64
        :param hidden_dim: 隐藏层维度,默认 128
        """
        super(CombineMLP, self).__init__()
        
        # 创建多个隐藏层
        layers = []
        for i in range(num_layers - 1):  # 生成 num_layers-1 个隐藏层
            layers.append(nn.Linear(input_dim if i == 0 else hidden_dim, hidden_dim))
            layers.append(nn.ReLU())
        
        # 输出层
        layers.append(nn.Linear(hidden_dim, output_dim))
        
        # 将层组合成一个模块
        self.mlp = nn.Sequential(*layers)


    def forward(self, x1, x2):
        """
        前向传播,支持两个输入 x1 和 x2
        :param x1: 第一个输入,形状 (1,16,4,64,64)
        :param x2: 第二个输入,形状 (1,16,4,64,64)
        :return: 输出特征,形状 (1,16,4,64,64)
        """
        # import pdb; pdb.set_trace()
        # 将两个输入拼接在一起
        x = torch.cat([x1, x2], dim=2)  # 拼接后形状为 (1,16,8,64,64)
        x = torch.flatten(x, start_dim=2)  # Flatten to shape (batch_size, 16, 8*64*64)
        x = self.mlp(x)  # Apply MLP  1,16,16384
        x = x.reshape(x.size(0), x.size(1), 4, 64, 64)  # Reshape back to (1, 16, 4, 64, 64)

        return x



class HDRCtrlModeltmp(nn.Module):
    def __init__(self):
        super(HDRCtrlModel, self).__init__()
        
        # 定义卷积层
        self.conv_layer1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, stride=4, padding=1)
        self.conv_layer2 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, stride=2, padding=1)
        
        # 定义 MLP 模型
        self.mlp = MLP()

    def decompose_hdr(self, hdr_latents):
        batch_size, channels, height, width = hdr_latents.shape
        device = hdr_latents.device  # 获取设备信息

        # 生成 4×4 掩码 (batch_size, 1, 4, 4)
        mask_small = torch.rand(batch_size, 1, 4, 4, device=device)  # 从均匀分布生成随机掩码

        # 将掩码调整为与输入相同的大小 (batch_size, 1, height, width)
        mask = torch.nn.functional.interpolate(mask_small, size=(height, width), mode='bilinear', align_corners=False)

        # 保持连续值,不进行二值化 #! 注意此步操作, 注意可视化 random mask的结果...  首先可以可视化mask, 其次可视化
        mask = mask.expand(-1, channels, -1, -1)  # 扩展掩码通道数以匹配 hdr_latents 的形状

        # 应用 mask 生成 L1 和 L2
        hdr_latents_1 = hdr_latents * mask  # L1 = 掩码部分
        hdr_latents_2 = hdr_latents * (1 - mask)  # L2 = 非掩码部分

        return hdr_latents_1, hdr_latents_2

    def forward(self, hdr_latents):
        # import pdb; pdb.set_trace()
        # todo: mask get hdr1, hdr2; input hdr_latents(实际上暂时是ldr)
        # 输入的形状为 (1, 16, 3, 256, 512),去掉多余的维度
        # import pdb; pdb.set_trace()
        hdr_latents = hdr_latents.squeeze(0)  # 变成 (16, 3, 256, 512)

        batch_size = hdr_latents.shape[0]

        # 转换为 NCHW 形式: (batch, channels, height, width) 输入之前numpy2tensor已经permute过了
        # hdr_latents = hdr_latents.permute(0, 3, 1, 2) #! 注意一下to tensor? (如何进行归一化的) 的时候已经
        # 进行卷积操作
        conv_output = self.conv_layer1(hdr_latents) #! 注意更改此处卷积!!!
        conv_output = self.conv_layer2(conv_output)  # (16, 3, 32, 64)

        # 截取前 32 列,得到最终形状 (16, 3, 32, 32)
        hdr_latents = conv_output[:, :, :, :32]
        # todo: decompose hdr
        hdr_latents_1, hdr_latents_2 = self.decompose_hdr(hdr_latents) # [16, 3, 32, 32], [16, 3, 32, 32]

        # 将输出展平,准备输入到 MLP 中
        hdr_latents = hdr_latents.reshape(hdr_latents.size(0), -1) # [16, 3072]
        hdr_latents_1 = hdr_latents_1.reshape(hdr_latents_1.size(0), -1) # [16, 3072]
        hdr_latents_2 = hdr_latents_2.reshape(hdr_latents_2.size(0), -1)

        # 传递给 MLP
        hdr_latents = self.mlp(hdr_latents) #(16, 2304)  3072 -> 2304
        hdr_latents_1 = self.mlp(hdr_latents_1)
        hdr_latents_2 = self.mlp(hdr_latents_2)

        # 重新调整输出的形状
        hdr_latents = hdr_latents.reshape(batch_size, 3, 768)  # reshape 输出为 (16, 3, 768)
        hdr_latents_1 = hdr_latents_1.reshape(batch_size, 3, 768)
        hdr_latents_2 = hdr_latents_2.reshape(batch_size, 3, 768)

        return hdr_latents, hdr_latents_1, hdr_latents_2

class HDRCtrlModel(nn.Module):
    def __init__(self):
        super(HDRCtrlModel, self).__init__()
        
        # 定义卷积层
        self.conv_layer1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, stride=4, padding=1)
        self.conv_layer2 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, stride=2, padding=1)
        
        # 定义 MLP 模型
        self.mlp = MLP()

    def decompose_hdr(self, hdr_latents): # hdr_latents: 16,3,32,32  可以可视化一下这部分代码...
        batch_size, channels, height, width = hdr_latents.shape
        device = hdr_latents.device  # 获取设备信息

        # 生成 4×4 掩码 (batch_size, 1, 4, 4)
        mask_small = torch.rand(batch_size, 1, 4, 4, device=device)  # 从均匀分布生成随机掩码

        threshold = 0.5  # 调节阈值,增加黑色部分比例
        mask_small = (mask_small > threshold).float()
        # 将掩码调整为与输入相同的大小 (batch_size, 1, height, width)  16,1,32,32
        mask = torch.nn.functional.interpolate(mask_small, size=(height, width), mode='bilinear', align_corners=False)
        
        # import pdb; pdb.set_trace()
        # 保持连续值,不进行二值化 #! 注意此步操作, 注意可视化 random mask的结果...  首先可以可视化mask, 其次可视化
        mask = mask.expand(-1, channels, -1, -1)  # 扩展掩码通道数以匹配 hdr_latents 的形状

        # 应用 mask 生成 L1 和 L2
        hdr_latents_1 = hdr_latents * mask  # L1 = 掩码部分
        hdr_latents_2 = hdr_latents * (1 - mask)  # L2 = 非掩码部分

        return hdr_latents_1, hdr_latents_2
    
    def blur_image(self, hdr_latents):
        # 高斯模糊, 输入 (16,3,256,256)
        processed_images = []
        kernel_size = (15, 15)
        sigmaX = 10

        # 对每张图像进行处理
        for i in range(hdr_latents.size(0)):  # 遍历16张图像
            # 获取第i张图像
            image = hdr_latents[i].permute(1, 2, 0).cpu().numpy()  # 将形状变为 (256, 256, 3)
            
            # 进行高斯模糊
            blurred_image = cv2.GaussianBlur(image, kernel_size, sigmaX)
            
            # 将图像缩放到 (32, 32, 3)
            resized_image = cv2.resize(blurred_image, (32, 32), interpolation=cv2.INTER_AREA)
            
            # 将处理后的图像从 numpy 数组转换回 tensor
            resized_image_tensor = torch.tensor(resized_image, dtype=torch.uint8, device=hdr_latents.device).permute(2, 0, 1)  # 转回 (3, 32, 32)
            
            # 将处理后的图像添加到列表中
            processed_images.append(resized_image_tensor)

        # 将列表中的所有图像堆叠成一个 tensor
        processed_images_tensor = torch.stack(processed_images)  # 形状为 (16, 3, 32, 32)

        return processed_images_tensor

    def normalize_hdr(self, img):
        img = img / 255.0
        return img * 2 -1

    def forward(self, hdr_latents):
        # import pdb; pdb.set_trace()
        # todo: mask get hdr1, hdr2; input hdr_latents(实际上暂时是ldr)
        # 输入的形状为 (n, 16, 3, 256, 256),去掉多余的维度
        # import pdb; pdb.set_trace()
        # hdr_latents = hdr_latents.squeeze(0)  # 变成 (16, 3, 256, 256)
        batch_size_ori = hdr_latents.shape[0]
        # frame_num = hdr_latents.shape[1]

        hdr_latents = rearrange(hdr_latents, 'b f c h w -> (b f) c h w')
        batch_size = hdr_latents.shape[0]
        # batch_size = hdr_latents.shape[0]
        # 转换为 NCHW 形式: (batch, channels, height, width) 输入之前numpy2tensor已经permute过了
        # 高斯模糊
        hdr_latents = self.blur_image(hdr_latents) #(16,3,32,32)  可视化打印一下!
        
        # import pdb; pdb.set_trace()
        # todo: decompose hdr
        hdr_latents_1, hdr_latents_2 = self.decompose_hdr(hdr_latents) # [16, 3, 32, 32], [16, 3, 32, 32]

        # todo: 加一步 normalize  /255 -> -1,1
        hdr_latents, hdr_latents_1, hdr_latents_2 = self.normalize_hdr(hdr_latents), self.normalize_hdr(hdr_latents_1), self.normalize_hdr(hdr_latents_2)

        # import pdb; pdb.set_trace()
        # 将输出展平,准备输入到 MLP 中
        hdr_latents = hdr_latents.reshape(hdr_latents.size(0), -1) # [16, 3072]
        hdr_latents_1 = hdr_latents_1.reshape(hdr_latents_1.size(0), -1) # [16, 3072]
        hdr_latents_2 = hdr_latents_2.reshape(hdr_latents_2.size(0), -1)
        
        # 传递给 MLP
        hdr_latents = self.mlp(hdr_latents) #(16, 2304)  3072 -> 2304
        hdr_latents_1 = self.mlp(hdr_latents_1)
        hdr_latents_2 = self.mlp(hdr_latents_2)

        # 重新调整输出的形状
        hdr_latents = hdr_latents.reshape(batch_size, 3, 768)  # reshape 输出为 (16*n, 3, 768)
        hdr_latents_1 = hdr_latents_1.reshape(batch_size, 3, 768) 
        hdr_latents_2 = hdr_latents_2.reshape(batch_size, 3, 768)
        
        hdr_latents = rearrange(hdr_latents, '(b f) n c -> b f n c', b=batch_size_ori)
        hdr_latents_1 = rearrange(hdr_latents_1, '(b f) n c -> b f n c', b=batch_size_ori)
        hdr_latents_2 = rearrange(hdr_latents_2, '(b f) n c -> b f n c', b=batch_size_ori)

        #! 两个细节: 1. 仅有ldr, 需不需要concat hdr或线性变换 2. mask不同帧不一致 
        return hdr_latents, hdr_latents_1, hdr_latents_2 # 3 x (b,16,3,768)


class InstructP2PVideoTrainer(DDIMLDMTextTraining):
    def __init__(
        self, *args,
        cond_image_dropout=0.1,
        cond_text_dropout=0.1,
        cond_hdr_dropout=0.1,
        prompt_type='output_prompt',
        text_cfg=7.5,
        img_cfg=1.2,
        hdr_cfg=7.5,
        hdr_rate=0.1,
        ic_condition='bg',
        hdr_train=False,
        **kwargs
    ):
        super().__init__(*args, **kwargs)
        self.hdr_train = hdr_train
        if self.hdr_train:
            self.hdr_encoder = HDRCtrlModel()
            self.hdr_encoder = self.hdr_encoder.to(self.unet.device)
            self.mlp = CombineMLP()
            self.cond_hdr_dropout = cond_hdr_dropout
            self.hdr_rate = hdr_rate

        self.cond_image_dropout = cond_image_dropout
        self.cond_text_dropout = cond_text_dropout

        assert ic_condition in ['fg', 'bg']
        assert prompt_type in ['output_prompt', 'edit_prompt', 'mixed_prompt']
        self.prompt_type = prompt_type
        self.ic_condition = ic_condition

        self.text_cfg = text_cfg
        self.img_cfg = img_cfg
        self.hdr_cfg = hdr_cfg

        #! 开启xformers训练设置
        # self.unet.enable_xformers_memory_efficient_attention()
        # self.unet.enable_gradient_checkpointing()

    def encode_text(self, text):
        with torch.cuda.amp.autocast(dtype=torch.float16):
            encoded_text = super().encode_text(text)
        return encoded_text

    def encode_image_to_latent(self, image):
        # with torch.cuda.amp.autocast(dtype=torch.float16):
        latent = super().encode_image_to_latent(image)
        return latent

    # @torch.cuda.amp.autocast(dtype=torch.float16)
    @torch.no_grad()
    def get_prompt(self, batch, mode):
        # if mode == 'train':
        #     if self.prompt_type == 'output_prompt':
        #         prompt = batch['output_prompt']
        #     elif self.prompt_type == 'edit_prompt': # training的时候是edit prompt
        #         prompt = batch['edit_prompt']
        #     elif self.prompt_type == 'mixed_prompt':
        #         if int(torch.rand(1)) > 0.5:
        #             prompt = batch['output_prompt']
        #         else:
        #             prompt = batch['edit_prompt']
        # else:
        #     prompt = batch['output_prompt']
        prompt = batch['text_prompt']
        if not self.hdr_train: #! 如果hdr后续加进来text了, 还是需要?
            if torch.rand(1).item() < self.cond_text_dropout:
                prompt = 'change the background'
        cond_text = self.encode_text(prompt)
        if mode == 'train':
            if torch.rand(1).item() < self.cond_text_dropout:
                cond_text = torch.zeros_like(cond_text)
        # import pdb; pdb.set_trace()
        return cond_text

    # @torch.cuda.amp.autocast(dtype=torch.float16)
    @torch.no_grad()
    def encode_image_to_latent(self, image):
        b, f, c, h, w = image.shape
        image = rearrange(image, 'b f c h w -> (b f) c h w')
        latent = super().encode_image_to_latent(image)
        latent = rearrange(latent, '(b f) c h w -> b f c h w', b=b)
        return latent

    # @torch.cuda.amp.autocast(dtype=torch.float16)
    @torch.no_grad()
    def decode_latent_to_image(self, latent):
        b, f, c, h, w = latent.shape
        latent = rearrange(latent, 'b f c h w -> (b f) c h w')

        image = []
        for latent_ in latent:
            image_ = super().decode_latent_to_image(latent_[None])
            image.append(image_.sample) #! 注意一下这里 之前没报过错吗; -> 之前不是一个类
        image = torch.cat(image, dim=0)
        # image = super().decode_latent_to_image(latent)
        image = rearrange(image, '(b f) c h w -> b f c h w', b=b)
        return image

    @torch.no_grad()
    def get_cond_image(self, batch, mode):
        # import pdb; pdb.set_trace()
        cond_fg_image = batch['fg_video'] # 这边condition 就是 input_video了, 估计是concat或者ctrlnet
        cond_fg_image = self.encode_image_to_latent(cond_fg_image)
        if self.ic_condition == 'bg':
            cond_bg_image = batch['bg_video']
            if torch.all(cond_bg_image == 0):
                cond_bg_image = torch.zeros_like(cond_fg_image) #! 背景一定概率为0, 置为0.3
            else:
                cond_bg_image = self.encode_image_to_latent(cond_bg_image)
            cond_image = torch.cat((cond_fg_image, cond_bg_image), dim=2) #(1,16,8,64,64)
        else:
            cond_image = cond_fg_image
        # test code: 可视化代码
        # from PIL import Image
        # Image.fromarray(((batch['input_video'] + 1) / 2 * 255).byte()[0,0].permute(1,2,0).cpu().numpy()).save('img1.png')

        # ip2p does not scale cond image, so we unscale the cond image
        # cond_image = self.encode_image_to_latent(cond_image) / self.scale_factor # 额 就是一个vae encode,没有缩放;这边不进行缩放吗? 啥意思呢

        if mode == 'train':
            # if int(torch.rand(1)) < self.cond_image_dropout: # 0.1的概率随机初始化, 应该是为了保障一个鲁棒性 难怪有的时候是全0, 不是代码的bug   #! 艹 bug, 这么久才发现....
            if torch.rand(1).item() < self.cond_image_dropout:
                cond_image = torch.zeros_like(cond_image)
        return cond_image

    @torch.no_grad()
    def get_diffused_image(self, batch, mode):
        # import pdb; pdb.set_trace()
        x = batch['tgt_video'] # 这边编辑的时候, 具体加噪和去噪的gt, 整个这套流程都是以编辑后, 即edited video作为输入
        # from PIL import Image
        # Image.fromarray(((batch['edited_video'] + 1) / 2 * 255).byte()[0,0].permute(1,2,0).cpu().numpy()).save('img2.png')
        b, *_ = x.shape
        x = self.encode_image_to_latent(x) # (1, 16, 4, 32, 32), 经过了vae encode
        eps = torch.randn_like(x)

        if mode == 'train':
            t = torch.randint(0, self.num_timesteps, (b,), device=x.device).long()
        else:
            t = torch.full((b,), self.num_timesteps-1, device=x.device, dtype=torch.long)
        x_t = self.add_noise(x, t, eps) # 加噪t步长  eps表示高斯噪声, 和scheduler的加噪

        if self.prediction_type == 'epsilon':
            return x_t, eps, t 
        else:
            return x_t, x, t


    @torch.no_grad()
    def get_hdr_image(self, batch, mode):
        x = batch['ldr_video'] # todo (16,3,256,512), float, tensor, device -> (1,16,3,256,256) 注意此时仅有ldr
        # import pdb; pdb.set_trace()
        hdr_latents, hdr_latents_1, hdr_latents_2 = self.hdr_encoder(x)
        if mode == 'train': #! 考虑一下这个开不开, 因为后面要拉consistency loss
            if torch.rand(1).item() < self.cond_hdr_dropout:
                hdr_latents = torch.zeros_like(hdr_latents)
                hdr_latents_1 = torch.zeros_like(hdr_latents_1)
                hdr_latents_2 = torch.zeros_like(hdr_latents_2)
        return hdr_latents, hdr_latents_1, hdr_latents_2

    @torch.no_grad() # batch中需要加载mask
    def get_mask(self, batch, mode, target):
        # (1,16,1,512,512)
        # import pdb; pdb.set_trace()
        mask = batch['fg_mask'] # todo 返回mask  (n,16,1,512,512)
        bs = mask.shape[0]
        target_height, target_width = target.shape[-2:] #(n,16,3,64,64)

        mask = rearrange(mask, 'b f c h w -> (b f) c h w')
        resized_mask = F.interpolate(mask, size=(target_height, target_width), mode='bilinear', align_corners=False)
        # resized_mask = resized_mask.unsqueeze(0)
        resized_mask = rearrange(resized_mask, '(b f) c h w -> b f c h w', b=bs)
        if target.shape[2] != resized_mask.shape[2]:
            resized_mask = resized_mask.expand(-1, -1, target.shape[2], -1, -1)  # 匹配目标通道数
        
        return resized_mask

    @torch.no_grad()
    def process_batch(self, batch, mode): #! 可视化这边的image, 查看问题出在哪了。。。 √, 应该是randn_drop的事
        # import pdb; pdb.set_trace()
        cond_image = self.get_cond_image(batch, mode) # 把输入的src image进行一个编码, 这边只有vae的encode, 且没有乘缩放的系数(ip2p本身没乘...)
        diffused_image, target, t = self.get_diffused_image(batch, mode) # diffused_image: 经过了vae encode, 和scheduler的加噪,标准的降噪输入
        # target: 这边是epsilon目标, 因此还是拉成epsilon的损失;t: 训练阶段是随机的一个数值, 推理阶段一般都是1000
        prompt = self.get_prompt(batch, mode)
        model_kwargs = {
            'encoder_hidden_states': prompt
        }
        # import pdb; pdb.set_trace()
        if self.hdr_train:
            hdr_image, hdr_image_1, hdr_image_2 = self.get_hdr_image(batch, mode) #(16,3,768)
            fg_mask = self.get_mask(batch, mode, target) # 把原图像前景mask resize到target大小
        
            model_kwargs = {
                'encoder_hidden_states': {'hdr_latents': hdr_image, 'encoder_hidden_states': prompt, 'hdr_latents_1': hdr_image_1, 'hdr_latents_2': hdr_image_2, 'fg_mask': fg_mask}
            }
        

        return {
            'diffused_input': diffused_image, # (1, 16, 4, 64, 64), 经过了vae encode, 和scheduler的加噪 
            'condition': cond_image, # 把输入的src image进行一个编码, 这边只有vae的encode, 且没有乘缩放的系数  (1,16,8,64,64)
            'target': target, # 这个是加到tgt video的高斯噪声
            't': t, # 0~1000的一个时刻
            'model_kwargs': model_kwargs, # 这边就是一个text_hidden_states
        }

    def training_step(self, batch, batch_idx): #! 注意一下仅仅训motion layer
        # import pdb; pdb.set_trace()
        processed_batch = self.process_batch(batch, mode='train') #(1,16,3,256,256), 读取的序列化图片, 仅仅做了一个归一化操作
        diffused_input = processed_batch['diffused_input'] # (1,16,4,64,64), edit images, 经过了vae encode, 和scheduler的加噪
        condition = processed_batch['condition'] # (1,16,8,64,64) 把输入的src images进行一个编码, 这边只有vae的encode, 且没有乘缩放的系数
        target = processed_batch['target'] # (1,16,4,64,64), target是加入的高斯噪声
        t = processed_batch['t'] # [257], 一个0~1000的随机时刻

        model_kwargs = processed_batch['model_kwargs'] # dict, 仅包含一项: encoder_hidden_states, [1, 77, 768] text_hidden_states
    
        model_input = torch.cat([diffused_input, condition], dim=2) # b, f, c, h, w [1,16,8,32,32] 这边是做的concat, 很多edit文章经典操作, 把两个东西concat起来
        #! 半精度
        # model_input = model_input.float()
        # model_kwargs['encoder_hidden_states'] = model_kwargs['encoder_hidden_states'].half()
        model_input = rearrange(model_input, 'b f c h w -> b c f h w') # [1,8,16,32,32]

        pred = self.unet(model_input, t, **model_kwargs).sample # (1,4,16,64,64) #!
        pred = rearrange(pred, 'b c f h w -> b f c h w') # (1,16,4,64,64) #!
        
        if not self.hdr_train:
            loss = self.get_loss(pred, target, t) # 0.320
        else:
            fg_mask = model_kwargs['encoder_hidden_states']['fg_mask']
            loss = self.get_hdr_loss(fg_mask, pred, target)
        ### add consistency loss ###
        # todo: 三个相同的model_input, 不同的model_kwargs (注意stack到一起, attn里面的逻辑也得改...)
        # if self.hdr_train:
            # fg_mask = model_kwargs['encoder_hidden_states']['fg_mask']
            # hdr_latents = model_kwargs['encoder_hidden_states']['hdr_latents_1']
            # hdr_latents_1 = model_kwargs['encoder_hidden_states']['hdr_latents_1']
            # hdr_latents_2 = model_kwargs['encoder_hidden_states']['hdr_latents_2']
            
            # model_input = torch.cat([diffused_input, condition], dim=2)
            # model_input = rearrange(model_input, 'b f c h w -> b c f h w')
            # model_input_1 = model_input.clone()
            # model_input_2 = model_input.clone()
            # model_input_all = torch.cat([model_input, model_input_1, model_input_2], dim=0)
            
            # prompt = model_kwargs['encoder_hidden_states']['encoder_hidden_states'] #(1*n,77,768)
            # prompt_all = torch.cat([prompt, prompt, prompt], dim=0) #(3*n,77,768)
            # # import pdb; pdb.set_trace()
            # model_kwargs['encoder_hidden_states']['encoder_hidden_states'] = prompt_all
            
            # # import pdb; pdb.set_trace()
            # hdr_latents_all = torch.cat([hdr_latents, hdr_latents_1, hdr_latents_2], dim=0) #(3*n,16,77,768)
            # model_kwargs['encoder_hidden_states']['hdr_latents']=hdr_latents_all
            # pred_all = self.unet(model_input_all, t, **model_kwargs).sample # (1,4,16,64,64) 
            # pred_all = rearrange(pred_all, 'b c f h w -> b f c h w')

            # pred, pred1, pred2 = pred_all.chunk(3, dim=0)
            # loss_ori = self.get_hdr_loss(fg_mask, pred, target)

            # # 假设获得了L1, L2
            # # hdr_latents_1 = mask(hdr_latents) # 随机构造一个mask + 逻辑矫正
            # # model_kwargs['encoder_hidden_states']['hdr_latents']=hdr_latents_1
            # # pred1 = self.unet(model_input, t, **model_kwargs).sample # get L1下的预测值 (1,16,4,64,64)
            # # pred1 = rearrange(pred1, 'b c f h w -> b f c h w') 

            # # model_input = torch.cat([diffused_input, condition], dim=2)
            # # model_input = rearrange(model_input, 'b f c h w -> b c f h w')
            # # # hdr_latents_2 = 1-mask(hdr_latents)
            # # model_kwargs['encoder_hidden_states']['hdr_latents']=hdr_latents_2
            # # pred2 = self.unet(model_input, t, **model_kwargs).sample # get L2下的预测值
            # # pred2 = rearrange(pred2, 'b c f h w -> b f c h w')
            # # import pdb; pdb.set_trace()
            # pred_combine = self.mlp(pred1, pred2) #! todo: 构造mlp loss 错了!! 搞对一下, 应该需要展平....
            # loss_c = self.get_hdr_loss(fg_mask, pred, pred_combine)
            # # loss_c = MSELoss(mask*pred, mask*pred_conbine) # todo: change to函数, 逻辑矫正
            
            # loss = loss_ori + self.hdr_rate * loss_c # 设一个系数, 好控制变化
        ### end ###
        self.log('train_loss', loss, sync_dist=True)

        latent_pred = self.predict_x_0_from_x_t(pred, t, diffused_input) # (1,16,4,32,32)
        image_pred = self.decode_latent_to_image(latent_pred) # 这边相当于是pred_x0了, (1,16,3,256,256)
        drop_out = torch.all(condition == 0).item()

        res_dict = {
            'loss': loss,
            'pred': image_pred,
            'drop_out': drop_out,
            'time': t[0].item()
        }
        return res_dict

    @torch.no_grad()
    @torch.cuda.amp.autocast(dtype=torch.bfloat16)
    def validation_step(self, batch, batch_idx): # 没写好 可以先pass
        # pass
        # import pdb; pdb.set_trace()
        if not self.hdr_train:
            from .inference.inference import InferenceIP2PVideo
            inf_pipe = InferenceIP2PVideo(
                self.unet, 
                beta_start=self.scheduler.config.beta_start,
                beta_end=self.scheduler.config.beta_end,
                beta_schedule=self.scheduler.config.beta_schedule,
                num_ddim_steps=20
            )
            # import pdb; pdb.set_trace()
            processed_batch = self.process_batch(batch, mode='val')
            diffused_input = torch.randn_like(processed_batch['diffused_input']) #(1,16,4,64,64)

            condition = processed_batch['condition'] # 这边其实留有一个接口给condition   (1,16,8,64,64)
            img_cond = condition
            text_cond = processed_batch['model_kwargs']['encoder_hidden_states']
            # import pdb; pdb.set_trace()
            res = inf_pipe(
                latent = diffused_input,
                text_cond = text_cond,
                text_uncond = self.encode_text(['']),
                img_cond = img_cond,
                text_cfg = self.text_cfg,
                img_cfg = self.img_cfg,
                hdr_cfg = self.hdr_cfg
            )

            latent_pred = res['latent']
            image_pred = self.decode_latent_to_image(latent_pred)
            res_dict = {
                'pred': image_pred,
            }
        else:
            from .inference.inference import InferenceIP2PVideoHDR
            inf_pipe = InferenceIP2PVideoHDR(
                self.unet, 
                beta_start=self.scheduler.config.beta_start,
                beta_end=self.scheduler.config.beta_end,
                beta_schedule=self.scheduler.config.beta_schedule,
                num_ddim_steps=20
            )
            # import pdb; pdb.set_trace()
            processed_batch = self.process_batch(batch, mode='val')
            diffused_input = torch.randn_like(processed_batch['diffused_input']) #(1,16,4,64,64)

            condition = processed_batch['condition'] # 这边其实留有一个接口给condition   (1,16,8,64,64)
            model_kwargs = processed_batch['model_kwargs']
            img_cond = condition
            text_cond = model_kwargs['encoder_hidden_states']['encoder_hidden_states']
            hdr_cond = model_kwargs['encoder_hidden_states']['hdr_latents']

            # import pdb; pdb.set_trace()
            res = inf_pipe(
                latent = diffused_input,
                text_cond = text_cond,
                text_uncond = self.encode_text(['']),
                hdr_cond = hdr_cond,
                img_cond = img_cond,
                text_cfg = self.text_cfg,
                img_cfg = self.img_cfg,
            )

            latent_pred = res['latent']
            image_pred = self.decode_latent_to_image(latent_pred)
            res_dict = {
                'pred': image_pred,
            }
        return res_dict

    def configure_optimizers(self):
        # optimizer = torch.optim.AdamW(self.unet.parameters(), lr=self.optim_args['lr'])
        import bitsandbytes as bnb
        params = []
        for name, p in self.unet.named_parameters():
            if ('transformer_in' in name) or ('temp_' in name):
                # p.requires_grad = True
                params.append(p)
            else:
                pass
                # p.requires_grad = False
        optimizer = bnb.optim.Adam8bit(params, lr=self.optim_args['lr'], betas=(0.9, 0.999))
        return optimizer

    def initialize_unet(self, unet_init_weights):
        if unet_init_weights is not None:
            print(f'INFO: initialize denoising UNet from {unet_init_weights}')
            sd = torch.load(unet_init_weights, map_location='cpu')
            model_sd = self.unet.state_dict()
            # fit input conv size
            for k in model_sd.keys():
                if k in sd.keys():
                    pass
                else:
                # handling temporal layers
                    if (('temp_' in k) or ('transformer_in' in k)) and 'proj_out' in k:
                        # print(f'INFO: initialize {k} from {model_sd[k].shape} to zeros')
                        sd[k] = torch.zeros_like(model_sd[k])
                    else:
                        # print(f'INFO: initialize {k} from {model_sd[k].shape} to random')
                        sd[k] = model_sd[k]
            self.unet.load_state_dict(sd)

class InstructP2PVideoTrainerTemporal(InstructP2PVideoTrainer):
    def initialize_unet(self, unet_init_weights): # 这边对比上一级来说, 新加的部分在于 rewrite了unet的load函数
        if unet_init_weights is not None:
            print(f'INFO: initialize denoising UNet from {unet_init_weights}')
            sd_init_weights, motion_module_init_weights, iclight_init_weights = unet_init_weights
            os.makedirs(sd_init_weights, exist_ok=True)
            sd_init_weights, motion_module_init_weights, iclight_init_weights = f'models/{sd_init_weights}', f'models/{motion_module_init_weights}', f'models/{iclight_init_weights}'

            if not os.path.exists(sd_init_weights):
                url = 'https://huggingface.co/stablediffusionapi/realistic-vision-v51/resolve/main/unet/diffusion_pytorch_model.safetensors'
                download_url_to_file(url=url, dst=sd_init_weights)
            if not os.path.exists(motion_module_init_weights):
                url = 'https://huggingface.co/aleafy/RelightVid/resolve/main/relvid_mm_sd15_fbc.pth'
                download_url_to_file(url=url, dst=motion_module_init_weights)
            if not os.path.exists(iclight_init_weights):
                url = 'https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fbc.safetensors'
                download_url_to_file(url=url, dst=iclight_init_weights)

            sd = load_file(sd_init_weights) #! 关于加载iclight的unet, 后面再加到yaml里面... 我甚至觉得只要改unet, vae和text其实都差不多
    
            # sd = torch.load(sd_init_weights, map_location='cpu') # 注意debug看看这是啥 + 打印一下原有和加载的keys
            if self.unet.use_motion_module:
                motion_sd = torch.load(motion_module_init_weights, map_location='cpu')
                assert len(sd) + len(motion_sd) == len(self.unet.state_dict()), f'Improper state dict length, got {len(sd) + len(motion_sd)} expected {len(self.unet.state_dict())}' #! 注意一下这行保证了加载的key至少在数量上是对应的; 这行的目的是self.unet是自己定义的 而这两个加载的是别的地方训练的(可能是diffusers中的)
                sd.update(motion_sd)
            
                for k, v in self.unet.state_dict().items():
                    if 'pos_encoder.pe' in k: # 这边是原来iv2v的代码 temporal_position_encoding_max_len, 设置为 32
                        sd[k] = v # the size of pe may change, 主要是temporal layer的size会发生改变... √ 由于输入的max_len变了
                    # if 'conv_in.weight' in k: #! tmp, 这里是test一下
                    #     sd[k] = v
            else:
                assert len(sd) == len(self.unet.state_dict())

            self.unet.load_state_dict(sd) # 为什么这里可以完美适配? √
            # todo: 更改sd的conv_in.weight的shape到12; 更改函数forward, 支持多个输入cond; iclight的sd_offset加载进去; 
            unet = self.unet # saVe一下
            # 这里是更改conv_in的shape; #! 这边注意一下要改成3D版本的unet
            with torch.no_grad():
                # new_conv_in = torch.nn.Conv2d(12, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
                new_conv_in = InflatedConv3d(12, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
                new_conv_in.weight.zero_()
                new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
                new_conv_in.bias = unet.conv_in.bias
                unet.conv_in = new_conv_in
            
            ###### -- 更改 forward函数 --- #####

            # 这里是更改forward函数。  具体调用的部分在main后面,那里也得改
            # unet_original_forward = unet.forward
            # def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
            #     c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample) # (1,8,67,120)  
            #     c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0) # (2,8,67,120) 应该是复制一份,用于cfg
            #     new_sample = torch.cat([sample, c_concat], dim=2) #(2,12,67,120) 这边还是在通道维度上进行的concat #! change 在第二维cat  (2,1,12,67,120)
            #     # todo 这边中间可以加一个f的通道 b,c,f,h,w  ; 另一种方式: 对于数据进行改变, 那么上述concat的代码也需要进行变换了...
            #     # new_sample = new_sample.unsqueeze(2) # (2,12,1,67,120)  #! 这里需要change, 要在一输入之前就要更改他的维度, 因此前面concat也需要稍微改一下    不要在forward中增加f维度 (因为要依赖输入)

            #     new_sample = rearrange(new_sample, 'b f c h w -> b c f h w')
            #     kwargs['cross_attention_kwargs'] = {}
            #     # return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
            #     result = unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
            #     # return (result[0].squeeze(2),) #! tmp
            #     return (rearrange(result[0], 'b c f h w -> b f c h w'),)
            # unet.forward = hooked_unet_forward
            
            ##### -- 更改 forward函数 --- #####

            # model_path = '/home/fy/Code/instruct-video-to-video/IC-Light/models/iclight_sd15_fbc.safetensors'
            # 这里是加载iclight的lora weight
            sd_offset = load_file(iclight_init_weights)
            sd_origin = unet.state_dict()
            keys = sd_origin.keys()
            for k in sd_offset.keys():
                sd_origin[k] = sd_origin[k] + sd_offset[k]
            # sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
            self.unet.load_state_dict(sd_origin, strict=True)
            del sd_offset, sd_origin, unet, keys

            # print(1)    
            # todo 试写一下iclight unet的加载方式
            # sd = load_file('/home/fy/Code/IC-Light/cache_models/models--stablediffusionapi--realistic-vision-v51/snapshots/19e3643d7d963c156d01537188ec08f0b79a514a/unet/diffusion_pytorch_model.safetensors')

            # debug: print参数
            # with open('logs/sd_keys.txt', 'w') as f:
            #     f.write("SD Keys:\n")
            #     for key in sd_ori.keys():
            #         f.write(f"{key}\n")

            # unet_state_dict = self.unet.state_dict()
            # with open('logs/unet_state_dict_keys.txt', 'w') as f:
            #         f.write("UNet State Dict Keys:\n")
            #         for key in unet_state_dict.keys():
            #             f.write(f"{key}\n")
        else:
            with torch.no_grad():
                new_conv_in = InflatedConv3d(12, self.unet.conv_in.out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding)
                self.unet.conv_in = new_conv_in

    def configure_optimizers(self): # 决定了仅仅训练motion_module的参数  注意一下pl.Trainer独有的函数
        import bitsandbytes as bnb
        motion_params = []
        remaining_params = []
        train_names = [] # for debug
        for name, p in self.unet.named_parameters():
            if ('motion' in name): #! 哦哦 这里决定了哪些参数用于训练... 这里实际训练的只有motion相关参数
                motion_params.append(p)
                train_names.append(name)
            elif ('attentions' in name):
                motion_params.append(p)
                train_names.append(name)
            else:
                remaining_params.append(p)
        # import pdb; pdb.set_trace()
        optimizer = bnb.optim.Adam8bit([
            {'params': motion_params, 'lr': self.optim_args['lr']},
        ], betas=(0.9, 0.999))
        return optimizer


class InstructP2PVideoTrainerTemporalText(InstructP2PVideoTrainerTemporal):
    def initialize_unet(self, unet_init_weights): # 这边对比上一级来说, 新加的部分在于 rewrite了unet的load函数
        if unet_init_weights is not None:
            print(f'INFO: initialize denoising UNet from {unet_init_weights}')
            sd_init_weights, motion_module_init_weights, iclight_init_weights = unet_init_weights
            if self.base_path:
                sd_init_weights = f"{self.base_path}/{sd_init_weights}"
            if '.safetensors' in sd_init_weights: # .safetensors的加载方式
                sd = load_file(sd_init_weights) #! 关于加载iclight的unet, 后面再加到yaml里面... 我甚至觉得只要改unet, vae和text其实都差不多
            else: #'.ckpt'场景 
                sd = torch.load(sd_init_weights, map_location='cpu') 

            # sd = torch.load(sd_init_weights, map_location='cpu') # 注意debug看看这是啥 + 打印一下原有和加载的keys
            if self.unet.use_motion_module:
                motion_sd = torch.load(motion_module_init_weights, map_location='cpu')
                assert len(sd) + len(motion_sd) == len(self.unet.state_dict()), f'Improper state dict length, got {len(sd) + len(motion_sd)} expected {len(self.unet.state_dict())}' #! 注意一下这行保证了加载的key至少在数量上是对应的; 这行的目的是self.unet是自己定义的 而这两个加载的是别的地方训练的(可能是diffusers中的)
                sd.update(motion_sd)
            
                for k, v in self.unet.state_dict().items():
                    if 'pos_encoder.pe' in k: # 这边是原来iv2v的代码 temporal_position_encoding_max_len, 设置为 32
                        sd[k] = v # the size of pe may change, 主要是temporal layer的size会发生改变... √ 由于输入的max_len变了
                    # if 'conv_in.weight' in k: #! tmp, 这里是test一下
                    #     sd[k] = v
            else:
                assert len(sd) == len(self.unet.state_dict())

            self.unet.load_state_dict(sd) # 为什么这里可以完美适配? √
            # todo: 更改sd的conv_in.weight的shape到12; 更改函数forward, 支持多个输入cond; iclight的sd_offset加载进去; 
            unet = self.unet # saVe一下
            # 这里是更改conv_in的shape; #! 这边注意一下要改成3D版本的unet
            with torch.no_grad():
                # new_conv_in = torch.nn.Conv2d(12, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
                new_conv_in = InflatedConv3d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
                new_conv_in.weight.zero_()
                new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
                new_conv_in.bias = unet.conv_in.bias
                unet.conv_in = new_conv_in
            

            # model_path = '/home/fy/Code/instruct-video-to-video/IC-Light/models/iclight_sd15_fbc.safetensors'
            # 这里是加载iclight的lora weight
            sd_offset = load_file(iclight_init_weights)
            sd_origin = unet.state_dict()
            keys = sd_origin.keys()
            for k in sd_offset.keys():
                sd_origin[k] = sd_origin[k] + sd_offset[k]
            # sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
            self.unet.load_state_dict(sd_origin, strict=True)
            del sd_offset, sd_origin, unet, keys

        else:
            with torch.no_grad():
                new_conv_in = InflatedConv3d(8, self.unet.conv_in.out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding)
                self.unet.conv_in = new_conv_in