Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,993 Bytes
0a63786 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import torch
from torch import nn
import pytorch_lightning as pl
from misc_utils.model_utils import default, instantiate_from_config
from diffusers import DDPMScheduler
from safetensors.torch import load_file
def mean_flat(tensor):
"""
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
class DDPM(pl.LightningModule):
def __init__(
self,
unet,
beta_schedule_args={
'beta_start': 0.00085,
'beta_end': 0.0012,
'num_train_timesteps': 1000,
'beta_schedule': 'scaled_linear',
'clip_sample': False,
'thresholding': False,
},
prediction_type='epsilon',
loss_fn='l2',
optim_args={},
base_path=None,
**kwargs
):
'''
denoising_fn: a denoising model such as UNet
beta_schedule_args: a dictionary which contains
the configurations of the beta schedule
'''
super().__init__(**kwargs)
self.unet = unet
self.prediction_type = prediction_type
beta_schedule_args.update({'prediction_type': prediction_type})
self.set_beta_schedule(beta_schedule_args)
self.num_timesteps = beta_schedule_args['num_train_timesteps']
self.optim_args = optim_args
self.loss = loss_fn
self.base_path = base_path
if loss_fn == 'l2' or loss_fn == 'mse':
self.loss_fn = nn.MSELoss(reduction='none')
elif loss_fn == 'l1' or loss_fn == 'mae':
self.loss_fn = nn.L1Loss(reduction='none')
elif isinstance(loss_fn, dict):
self.loss_fn = instantiate_from_config(loss_fn)
else:
raise NotImplementedError
def set_beta_schedule(self, beta_schedule_args):
self.beta_schedule_args = beta_schedule_args
self.scheduler = DDPMScheduler(**beta_schedule_args)
@torch.no_grad()
def add_noise(self, x, t, noise=None):
noise = default(noise, torch.randn_like(x))
return self.scheduler.add_noise(x, noise, t)
def predict_x_0_from_x_t(self, model_output: torch.Tensor, t: torch.LongTensor, x_t: torch.Tensor): # 这边是一个缓存值: predicted x0
''' recover x_0 from predicted noise. Reverse of Eq(4) in DDPM paper
\hat(x_0) = 1 / sqrt[\bar(a)]*x_t - sqrt[(1-\bar(a)) / \bar(a)]*noise'''
# return self.scheduler.step(model_output, int(t), x_t).pred_original_sample
if self.prediction_type == 'sample':
return model_output
# for training target == epsilon
alphas_cumprod = self.scheduler.alphas_cumprod.to(device=x_t.device, dtype=x_t.dtype)
sqrt_recip_alphas_cumprod = torch.sqrt(1. / alphas_cumprod[t]).flatten()
sqrt_recipm1_alphas_cumprod = torch.sqrt(1. / alphas_cumprod[t] - 1.).flatten()
while len(sqrt_recip_alphas_cumprod.shape) < len(x_t.shape):
sqrt_recip_alphas_cumprod = sqrt_recip_alphas_cumprod.unsqueeze(-1)
sqrt_recipm1_alphas_cumprod = sqrt_recipm1_alphas_cumprod.unsqueeze(-1)
return sqrt_recip_alphas_cumprod * x_t - sqrt_recipm1_alphas_cumprod * model_output
def predict_x_tm1_from_x_t(self, model_output, t, x_t):
'''predict x_{t-1} from x_t and model_output'''
return self.scheduler.step(model_output, t, x_t).prev_sample
class DDPMTraining(DDPM): # 加入training step保证训练等等
def __init__(
self,
unet,
beta_schedule_args,
prediction_type='epsilon',
loss_fn='l2',
optim_args={
'lr': 1e-3,
'weight_decay': 5e-4
},
log_args={}, # for record all arguments with self.save_hyperparameters
ddim_sampling_steps=20,
guidance_scale=5.,
**kwargs
):
super().__init__(
unet=unet,
beta_schedule_args=beta_schedule_args,
prediction_type=prediction_type,
loss_fn=loss_fn,
optim_args=optim_args,
**kwargs)
self.log_args = log_args
self.call_save_hyperparameters()
self.ddim_sampling_steps = ddim_sampling_steps
self.guidance_scale = guidance_scale
def call_save_hyperparameters(self):
'''write in a separate function so that the inherit class can overwrite it'''
self.save_hyperparameters(ignore=['unet'])
def process_batch(self, x_0, mode):
assert mode in ['train', 'val', 'test']
b, *_ = x_0.shape
noise = torch.randn_like(x_0)
if mode == 'train':
t = torch.randint(0, self.num_timesteps, (b,), device=x_0.device).long()
x_t = self.add_noise(x_0, t, noise=noise)
else:
t = torch.full((b,), self.num_timesteps-1, device=x_0.device, dtype=torch.long)
x_t = self.add_noise(x_0, t, noise=noise)
model_kwargs = {}
'''the order of return is
1) model input,
2) model pred target,
3) model time condition
4) raw image before adding noise
5) model_kwargs
'''
if self.prediction_type == 'epsilon':
return {
'model_input': x_t,
'model_target': noise,
't': t,
'model_kwargs': model_kwargs
}
else:
return {
'model_input': x_t,
'model_target': x_0,
't': t,
'model_kwargs': model_kwargs
}
def forward(self, x):
return self.validation_step(x, 0)
def get_loss(self, pred, target, t):
loss_raw = self.loss_fn(pred, target)
loss_flat = mean_flat(loss_raw)
loss = loss_flat
loss = loss.mean()
return loss
def get_hdr_loss(self, fg_mask, pred, pred_combine): # fg_mask: 1,16,4,64,64 都是这个维度
# import pdb; pdb.set_trace() #todo 打印维度, 查看是否有问题
loss_raw = self.loss_fn(pred, pred_combine) #(1,16,4,64,64)
masked_loss = fg_mask * loss_raw
loss_flat = mean_flat(masked_loss)
loss = loss_flat
loss = loss.mean()
return loss
def training_step(self, batch, batch_idx):
self.clip_denoised = False
processed_batch = self.process_batch(batch, mode='train')
x_t = processed_batch['model_input']
y = processed_batch['model_target']
t = processed_batch['t']
model_kwargs = processed_batch['model_kwargs']
pred = self.unet(x_t, t, **model_kwargs)
loss = self.get_loss(pred, y, t)
x_0_hat = self.predict_x_0_from_x_t(pred, t, x_t)
self.log(f'train_loss', loss)
return {
'loss': loss,
'model_input': x_t,
'model_output': pred,
'x_0_hat': x_0_hat
}
@torch.no_grad()
def validation_step(self, batch, batch_idx):
from diffusers import DDIMScheduler
scheduler = DDIMScheduler(**self.beta_schedule_args)
scheduler.set_timesteps(self.ddim_sampling_steps)
processed_batch = self.process_batch(batch, mode='val')
x_t = torch.randn_like(processed_batch['model_input'])
x_hist = []
timesteps = scheduler.timesteps
for i, t in enumerate(timesteps):
t_ = torch.full((x_t.shape[0],), t, device=x_t.device, dtype=torch.long)
model_output = self.unet(x_t, t_, **processed_batch['model_kwargs'])
x_hist.append(
self.predict_x_0_from_x_t(model_output, t_, x_t)
)
x_t = scheduler.step(model_output, t, x_t).prev_sample
return {
'x_pred': x_t,
'x_hist': torch.stack(x_hist, dim=1),
}
def test_step(self, batch, batch_idx):
'''Test is usually not used in a sampling problem'''
return self.validation_step(batch, batch_idx)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), **self.optim_args)
return optimizer
class DDPMLDMTraining(DDPMTraining): # 加入潜变量, LDM 即在latent层面上来做
def __init__(
self, *args,
vae,
unet_init_weights=None,
vae_init_weights=None,
scale_factor=0.18215,
**kwargs
):
super().__init__(*args, **kwargs)
self.vae = vae
self.scale_factor = scale_factor
self.initialize_unet(unet_init_weights)
self.initialize_vqvae(vae_init_weights) # 这边可以把这个设为none(config文件里面)
def initialize_unet(self, unet_init_weights):
if unet_init_weights is not None:
print(f'INFO: initialize denoising UNet from {unet_init_weights}')
sd = torch.load(unet_init_weights, map_location='cpu')
self.unet.load_state_dict(sd)
def initialize_vqvae(self, vqvae_init_weights): # 这边vae load最后调用就是这个init函数
if vqvae_init_weights is not None:
print(f'INFO: initialize VQVAE from {vqvae_init_weights}')
if '.safetensors' in vqvae_init_weights:
sd = load_file(vqvae_init_weights)
else:
sd = torch.load(vqvae_init_weights, map_location='cpu')
self.vae.load_state_dict(sd)
for param in self.vae.parameters():
param.requires_grad = False # vae 也是冻住参数的
def call_save_hyperparameters(self):
'''write in a separate function so that the inherit class can overwrite it'''
self.save_hyperparameters(ignore=['unet', 'vae'])
@torch.no_grad()
def encode_image_to_latent(self, x):
#return self.vae.encode(x) * self.scale_factor #! change
return self.vae.encode(x).latent_dist.mean * self.scale_factor
@torch.no_grad()
def decode_latent_to_image(self, x):
x = x / self.scale_factor # 注意一下这个东西出现 必须要一致 sample乘以了, 这边就得除以
return self.vae.decode(x)
def process_batch(self, x_0, mode):
x_0 = self.encode_image_to_latent(x_0)
res = super().process_batch(x_0, mode)
return res
def training_step(self, batch, batch_idx):
res_dict = super().training_step(batch, batch_idx)
res_dict['x_0_hat'] = self.decode_latent_to_image(res_dict['x_0_hat'])
return res_dict
class DDIMLDMTextTraining(DDPMLDMTraining): # 加入text encoder以及文本编码进行条件生成;+改成DDIM 训练
def __init__(
self, *args,
text_model,
text_model_init_weights=None,
**kwargs
):
super().__init__(
*args, **kwargs
)
self.text_model = text_model
self.initialize_text_model(text_model_init_weights) #! 这个也可以不要, 直接设置weights=None
def initialize_text_model(self, text_model_init_weights): # 这边text model最后调用就是这个init函数
if text_model_init_weights is not None:
print(f'INFO: initialize text model from {text_model_init_weights}')
sd = torch.load(text_model_init_weights, map_location='cpu')
self.text_model.load_state_dict(sd)
for param in self.text_model.parameters():
param.requires_grad = False # 这边设置了text model不回传梯度
def call_save_hyperparameters(self):
'''write in a separate function so that the inherit class can overwrite it'''
self.save_hyperparameters(ignore=['unet', 'vae', 'text_model'])
@torch.no_grad()
def encode_text(self, x):
if isinstance(x, tuple):
x = list(x)
return self.text_model.encode(x)
def process_batch(self, batch, mode):
x_0 = batch['image']
text = batch['text']
processed_batch = super().process_batch(x_0, mode)
processed_batch['model_kwargs'].update({
'context': {'text': self.encode_text([text])}
})
return processed_batch
def sampling(self, image_shape=(1, 4, 64, 64), text='', negative_text=None):
'''
Usage:
sampled = self.sampling(text='a cat on the tree', negative_text='')
x = sampled['x_pred'][0].permute(1, 2, 0).detach().cpu().numpy()
x = x / 2 + 0.5
plt.imshow(x)
y = sampled['x_hist'][0, 10].permute(1, 2, 0).detach().cpu().numpy()
y = y / 2 + 0.5
plt.imshow(y)
'''
from diffusers import DDIMScheduler # ddim训练
scheduler = DDIMScheduler(**self.beta_schedule_args)
scheduler.set_timesteps(self.ddim_sampling_steps)
x_t = torch.randn(*image_shape, device=self.device)
do_cfg = self.guidance_scale > 1. and negative_text is not None
if do_cfg:
context = {'text': self.encode_text([text, negative_text])}
else:
context = {'text': self.encode_text([text])}
x_hist = []
timesteps = scheduler.timesteps
for i, t in enumerate(timesteps):
if do_cfg:
model_input = torch.cat([x_t]*2)
else:
model_input = x_t
t_ = torch.full((model_input.shape[0],), t, device=x_t.device, dtype=torch.long)
model_output = self.unet(model_input, t_, context)
if do_cfg:
model_output_positive, model_output_negative = model_output.chunk(2)
model_output = model_output_negative + self.guidance_scale * (model_output_positive - model_output_negative)
x_hist.append(
self.decode_latent_to_image(self.predict_x_0_from_x_t(model_output, t_[:x_t.shape[0]], x_t))
)
x_t = scheduler.step(model_output, t, x_t).prev_sample
return {
'x_pred': self.decode_latent_to_image(x_t),
'x_hist': torch.stack(x_hist, dim=1),
}
|