Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,576 Bytes
05a69c5 0389aac 05a69c5 0a63786 99da57b 0a63786 99da57b 0a63786 99da57b 0a63786 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
title: RelightVid
emoji: π₯
colorFrom: red
colorTo: yellow
sdk: gradio
sdk_version: 5.23.3
app_file: app.py
license: mit
---
<!-- # <img src="assets/icon.png" style="vertical-align: -14px;" :height="50px" width="50px"> RelightVid -->
# RelightVid
**[RelightVid: Temporal-Consistent Diffusion Model for Video Relighting](https://arxiv.org/abs/2501.16330)**
</br>
[Ye Fang](https://github.com/Aleafy)\*,
[Zeyi Sun](https://github.com/SunzeY)\*,
[Shangzhan Zhang](https://zhanghe3z.github.io/),
[Tong Wu](https://wutong16.github.io/),
[Yinghao Xu](https://justimyhxu.github.io/),
[Pan Zhang](https://panzhang0212.github.io/),
[Jiaqi Wang](https://myownskyw7.github.io/),
[Gordon Wetzstein](https://web.stanford.edu/~gordonwz/),
[Dahua Lin](http://dahua.site/)
<p style="font-size: 0.6em; margin-top: -1em">*Equal Contribution</p>
<p align="center">
<a href="https://arxiv.org/abs/2501.16330"><img src="https://img.shields.io/badge/arXiv-Paper-<color>"></a>
<a href="https://sunzey.github.io/Make-it-Real"><img src="https://img.shields.io/badge/Project-Website-red"></a>
<a href="https://www.youtube.com/watch?v=_j-t8592GCM"><img src="https://img.shields.io/static/v1?label=Demo&message=Video&color=orange"></a>
<a href="" target='_blank'>
<img src="https://visitor-badge.laobi.icu/badge?page_id=Aleafy.RelightVid&left_color=gray&right_color=blue">
</a>
</p>

## π News
<!-- π [2024/6/8] We release our [inference pipeline of Make-it-Real](#β‘-quick-start), including material matching and generation of albedo-only 3D objects.
π [2024/6/8] [Material library annotations](#π¦-data-preparation) generated by GPT-4V and [data engine](#β‘-quick-start) are released! -->
β¨ [2025/3/12] The [inference code](xxx), [project page](xxx) and [huggingface demo](xxx) are released!
β¨ [2025/1/27] We release the [paper](https://arxiv.org/abs/2501.16330) of RelightVid!
## π‘ Highlights
- π₯ We first demonstrate that **GPT-4V** can effectively **recognize and describe materials**, allowing our model to precisely identifies and aligns materials with the corresponding components of 3D objects.
- π₯ We construct a **Material Library** containing thousands of materials with highly
detailed descriptions readily for MLLMs to look up and assign.
- π₯ **An effective pipeline** for texture segmentation, material identification and matching, enabling the high-quality application of materials to
3D assets.
## π¨βπ» Todo
- [ ] Evaluation for Existed and Model-Generated Assets (both code & test assets)
- [ ] More Interactive Demos (huggingface, jupyter)
- [x] Make-it-Real Pipeline Inference Code
- [x] Highly detailed Material Library annotations (generated by GPT-4V)
- [x] Paper and Web Demos
## πΎ Installation
```bash
git clone https://github.com/Aleafy/RelightVid.git
cd RelightVid
conda create -n relitv python=3.10
conda activate relitv
pip install torch==2.1.2 torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
```
## π¦ Data Preparation
1. **Annotations**: in `data/material_lib/annotations` [folder](data/material_lib/annotations), include:
- Highly-detailed descriptions by GPT-4V: offering thorough descriptions of the materialβs visual characteristics and rich semantic information.
- Category-tree: Divided into a hierarchical structure with coarse and fine granularity, it includes over 80 subcategories.
2. **PBR Maps**: You can download the complete PBR data collection at [Huggingface](https://huggingface.co/datasets/gvecchio/MatSynth/tree/main), or download the data used in our project at [OpenXLab](https://openxlab.org.cn/datasets/YeFang/MatSynth/tree/main) (Recommended). (If you have any questions, please refer to [issue#5](https://github.com/Aleafy/Make_it_Real/issues/5))
3. **Material Images(optinal)**: You can download the material images file [here](https://drive.google.com/file/d/1ob7CV6JiaqFyjuCzlmSnBuNRkzt2qMSG/view?usp=sharing), to check and visualize the material appearance.
<pre>
Make_it_Real
βββ data
βββ material_lib
βββ annotations
βββ mat_images
βββ pbr_maps
βββ train
βββ Ceremic
βββ Concrete
βββ ...
βββ Wood
</pre>
## β‘ Quick Start
#### Inference
```bash
python main.py --obj_dir <object_dir> --exp_name <unique_exp_name> --api_key <your_own_gpt4_api_key>
```
- To ensure proper network connectivity for GPT-4V, add proxy environment settings in [main.py](https://github.com/Aleafy/Make_it_Real/blob/feb3563d57fbe18abbff8d4abfb48f71cc8f967b/main.py#L18) (optional). Also, please verify the reachability of your [API host](https://github.com/Aleafy/Make_it_Real/blob/feb3563d57fbe18abbff8d4abfb48f71cc8f967b/utils/gpt4_query.py#L68).
- Result visualization (blender engine) is located in the `output/refine_output` dir. You can compare the result with that in `output/ori_output`.
#### Annotation Engine
```bash
cd scripts/gpt_anno
python gpt4_query_mat.py
```
`Note`: Besides functinoning as annotation engine, you can also use this code ([gpt4_query_mat.py](https://github.com/Aleafy/Make_it_Real/blob/main/scripts/gpt_anno/gpt4_query_mat.py)) to test the GPT-4V connection simply.
<!-- [annotation code](scripts/gpt_anno) -->
<!-- #### Evalutation -->
## β€οΈ Acknowledgments
- [MatSynth](https://huggingface.co/datasets/gvecchio/MatSynth/tree/main): a Physically Based Rendering (PBR) materials dataset, which offers extensive high-resolusion tilable pbr maps to look up.
- [TEXTure](https://github.com/TEXTurePaper/TEXTurePaper): Wonderful text-guided texture generation model, and the codebase we built upon.
- [SoM](https://som-gpt4v.github.io/): Draw visual cues on images to facilate GPT-4V query better.
- [Material Palette](https://github.com/astra-vision/MaterialPalette): Excellent exploration of material extraction and generation, offers good insights and comparable setting.
## βοΈ Citation
If you find our work helpful for your research, please consider giving a star β and citation π
```bibtex
@misc{fang2024makeitreal,
title={Make-it-Real: Unleashing Large Multimodal Model for Painting 3D Objects with Realistic Materials},
author={Ye Fang and Zeyi Sun and Tong Wu and Jiaqi Wang and Ziwei Liu and Gordon Wetzstein and Dahua Lin},
year={2024},
eprint={2404.16829},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
|