File size: 3,764 Bytes
b54df69
 
54e2f2a
4aa29f9
54e2f2a
 
 
 
 
 
 
 
4aa29f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54e2f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa29f9
 
 
54e2f2a
 
 
4aa29f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
771a15e
d6e934d
54e2f2a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import streamlit as st
import pandas as pd
import openai
from dateutil import parser

# Function to calculate late interest
def calculate_late_interest(data, late_interest_rate):
    # Calculate late days and late interest
    data['late_days'] = (data['payment_date'] - data['due_date']).dt.days.clip(lower=0)
    data['late_interest'] = data['late_days'] * data['amount'] * (late_interest_rate / 100)
    return data

# Function to analyze Excel sheet and extract relevant information
def analyze_excel(df):
    # Extract due dates and payment dates
    due_dates = df.iloc[:, 0].dropna().tolist()
    payment_dates = df.iloc[:, 1].dropna().tolist()
    amounts = []

    # Extract and clean amounts from third column
    for amount in df.iloc[:, 2]:
        if isinstance(amount, str):
            amount = amount.replace('"', '').replace(',', '')
        amounts.append(float(amount))

    return due_dates, payment_dates, amounts

# Streamlit App
def main():
    st.title("Invoice Interest Calculator and Conversation")

    # Allow user to upload Excel sheet
    uploaded_file = st.file_uploader("Upload Excel file", type=["xlsx", "xls"])

    if uploaded_file is not None:
        df = pd.read_excel(uploaded_file)

        # Display uploaded data
        st.write("Uploaded Data:")
        st.write(df)

        # Analyze Excel sheet
        due_dates, payment_dates, amounts = analyze_excel(df)

        # Allow user to specify late interest rate
        late_interest_rate = st.number_input("Enter Late Interest Rate (%):", min_value=0.0, max_value=100.0, step=0.1)

        # Calculate late interest if due dates and payment dates are available
        if due_dates and payment_dates:
            # Create DataFrame with extracted due dates, payment dates, and placeholder amount
            df_calculate = pd.DataFrame({
                'due_date': due_dates,
                'payment_date': payment_dates,
                'amount': [0] * len(due_dates)  # Placeholder amount for calculation
            })

            # Calculate late interest
            df_with_interest = calculate_late_interest(df_calculate, late_interest_rate)

            # Display calculated late interest
            st.write("Calculated Late Interest:")
            st.write(df_with_interest['late_interest'].sum())

        # Generate conversation prompt
        prompt = "I have analyzed the provided Excel sheet. "
        if due_dates:
            prompt += f"The due dates in the sheet are: {', '.join(str(date) for date in due_dates)}. "
        if payment_dates:
            prompt += f"The payment dates in the sheet are: {', '.join(str(date) for date in payment_dates)}. "
        if amounts:
            prompt += f"The amounts in the sheet are: {', '.join(str(amount) for amount in amounts)}. "
        prompt += "Based on this information, what would you like to discuss?"

        # Allow user to engage in conversation
        user_input = st.text_input("Start a conversation:")
        if st.button("Send"):
            if 'api_key' not in st.session_state:
                st.session_state.api_key = st.text_input("Enter your OpenAI API key:")
            openai.api_key = st.session_state.api_key  # Set OpenAI API key
            
            completion = openai.ChatCompletion.create(
                model="gpt-3.5-turbo",
                messages=[
                    {"role": "system", "content": prompt},
                    {"role": "user", "content": user_input}
                ],
                max_tokens=800  # Adjust this value to allow longer responses
            )
            response = completion.choices[0].message['content']
            st.write("AI's Response:")
            st.write(response)

if __name__ == "__main__":
    main()