Spaces:
Sleeping
Sleeping
import gradio as gr | |
from ultralytics import YOLO | |
import cv2 | |
examples=[["photo/a.jpg"],["photo/b.jpg"], | |
["photo/c.jpg"],["photo/d.jpg"], | |
["photo/e.jpg"],["photo/f.jpg"], | |
["photo/g.jpg"],["photo/h.jpg"], | |
["photo/multi tomatos.jpg"]] | |
def detect_objects_on_image(image_path, conf_threshold, iou_threshold): | |
image = cv2.imread(image_path) | |
model = YOLO("best.pt") | |
results = model.predict( | |
source=image, | |
conf=conf_threshold, | |
iou=iou_threshold, | |
show_labels=True, | |
show_conf=True, | |
imgsz=640, | |
) | |
result = results[0] | |
output = [] | |
for box in result.boxes: | |
x1, y1, x2, y2 = [ | |
round(x) for x in box.xyxy[0].tolist() | |
] | |
class_id = box.cls[0].item() | |
prob = round(box.conf[0].item(), 2) | |
output.append([ | |
x1, y1, x2, y2, result.names[class_id], prob | |
]) | |
cv2.rectangle( | |
image, | |
(x1, y1), | |
(x2, y2), | |
color=(0, 0, 255), | |
thickness=2, | |
lineType=cv2.LINE_AA | |
) | |
cv2.putText(image,result.names[class_id]+'_'+str(prob), (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36,255,12), 2) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
demo = gr.Interface( | |
fn=detect_objects_on_image, | |
inputs=[ | |
gr.Image(type="filepath", label="Input Image"), | |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), | |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), | |
], | |
outputs=[ | |
gr.Image(type="numpy", label="Output Image"), | |
], | |
title="Yolov8 Custom Object Detection", | |
examples=examples, | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() |