Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
423fa16
1
Parent(s):
61d39b8
ins
Browse files- app.py +37 -0
- instruct_dv.py +77 -0
app.py
CHANGED
@@ -3,6 +3,7 @@ import gradio as gr
|
|
3 |
from typo_check import css, process_input,MODEL_OPTIONS_TYPO
|
4 |
from title_gen import generate_title, MODEL_OPTIONS_TITLE
|
5 |
from content_gen import generate_content, MODEL_OPTIONS_CONTENT, get_default_prompt
|
|
|
6 |
|
7 |
|
8 |
# Create Gradio interface using the latest syntax
|
@@ -198,6 +199,42 @@ This is an experimental model trained on a very small dataset of Dhivehi news ar
|
|
198 |
**Notice:**
|
199 |
|
200 |
All outputs generated are synthetic, created using fine-tuned models for experimental and educational evaluation. Accuracy is not guaranteed, and the content should not be considered a source of truth. Please avoid applying these results to production environments, critical systems, or real-world decision-making without proper validation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
""")
|
202 |
|
203 |
# Launch the app
|
|
|
3 |
from typo_check import css, process_input,MODEL_OPTIONS_TYPO
|
4 |
from title_gen import generate_title, MODEL_OPTIONS_TITLE
|
5 |
from content_gen import generate_content, MODEL_OPTIONS_CONTENT, get_default_prompt
|
6 |
+
from instruct_dv import generate_response, MODEL_OPTIONS_INSTRUCT
|
7 |
|
8 |
|
9 |
# Create Gradio interface using the latest syntax
|
|
|
199 |
**Notice:**
|
200 |
|
201 |
All outputs generated are synthetic, created using fine-tuned models for experimental and educational evaluation. Accuracy is not guaranteed, and the content should not be considered a source of truth. Please avoid applying these results to production environments, critical systems, or real-world decision-making without proper validation.
|
202 |
+
""")
|
203 |
+
|
204 |
+
with gr.Tab("Instruction Following"):
|
205 |
+
gr.Markdown("# <center>Dhivehi Instruction Following</center>")
|
206 |
+
gr.Markdown("Enter an instruction and (optionally) input text. The model will generate a response following your instruction. Set the random seed for reproducibility. Enable sampling for creative/random results.")
|
207 |
+
with gr.Row():
|
208 |
+
instruction = gr.Textbox(lines=2, label="Instruction", rtl=True, elem_classes="textbox1")
|
209 |
+
with gr.Row():
|
210 |
+
input_text = gr.Textbox(lines=2, label="Input Text (optional)", rtl=True, elem_classes="textbox1")
|
211 |
+
with gr.Row():
|
212 |
+
model_choice = gr.Dropdown(choices=list(MODEL_OPTIONS_INSTRUCT.keys()), value=list(MODEL_OPTIONS_INSTRUCT.keys())[0], label="Model")
|
213 |
+
with gr.Row():
|
214 |
+
seed = gr.Slider(0, 10000, value=42, step=1, label="Random Seed")
|
215 |
+
use_sampling = gr.Checkbox(label="Use Sampling (Creative/Random)", value=True)
|
216 |
+
with gr.Row():
|
217 |
+
generated_response = gr.Textbox(label="Model Response", rtl=True, elem_classes="textbox1")
|
218 |
+
generate_btn = gr.Button("Generate Response")
|
219 |
+
generate_btn.click(
|
220 |
+
fn=generate_response,
|
221 |
+
inputs=[instruction, input_text, seed, use_sampling, model_choice],
|
222 |
+
outputs=generated_response
|
223 |
+
)
|
224 |
+
gr.Examples(
|
225 |
+
examples=[
|
226 |
+
["ދީފައިވާ މައުޟޫޢާ ބެހޭގޮތުން ކުރު ޕެރެގްރާފެއް ލިޔެލާށެވެ.","އިއާދަކުރަނިވި ހަކަތަ ބޭނުންކުރުމުގެ މުހިންމުކަން"],
|
227 |
+
["އާ މޯބައިލް އެޕް ޕްރޮމޯޓް ކުރުމަށް މާކެޓިންގ ސްޓްރެޓެޖީތަކުގެ ލިސްޓެއް އުފެއްދުން.",""],
|
228 |
+
["ދިގުމިނުގައި 10ސެންޓިމީޓަރު އަދި ފުޅާމިނަކީ 5ސެންޓިމީޓަރު ހުންނަ ރެކްޓަންގްލަރެއްގެ ސަރަހައްދު ހިސާބުކުރުން.",""],
|
229 |
+
["ތިރީގައިވާ ބަސްފުޅު ތެދެއް ނުވަތަ ދޮގުގެ ގޮތުގައި ގިންތިކުރުން.","ސުޕްރީމް ކޯޓަކީ އެމެރިކާގެ އެންމެ މަތީ ކޯޓެވެ."],
|
230 |
+
],
|
231 |
+
inputs=[instruction, input_text],
|
232 |
+
)
|
233 |
+
gr.Markdown("""\
|
234 |
+
**Notes:**
|
235 |
+
- This tab allows you to give instructions to the model, optionally with input text, for general-purpose generation or task following in Dhivehi.
|
236 |
+
- Try different seeds or enable sampling for more creative outputs.
|
237 |
+
- The model is experimental and may not always follow instructions perfectly.
|
238 |
""")
|
239 |
|
240 |
# Launch the app
|
instruct_dv.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
5 |
+
import spaces
|
6 |
+
|
7 |
+
|
8 |
+
# Available models
|
9 |
+
MODEL_OPTIONS_INSTRUCT = {
|
10 |
+
"A2 Model": "alakxender/flan-t5-base-alpaca-dv5",
|
11 |
+
"A1 Model": "alakxender/flan-t5-base-alpaca-dv"
|
12 |
+
}
|
13 |
+
|
14 |
+
# Cache for loaded models/tokenizers
|
15 |
+
MODEL_CACHE = {}
|
16 |
+
|
17 |
+
def get_model_and_tokenizer(model_dir):
|
18 |
+
if model_dir not in MODEL_CACHE:
|
19 |
+
print(f"Loading model: {model_dir}")
|
20 |
+
tokenizer = T5Tokenizer.from_pretrained(model_dir)
|
21 |
+
model = T5ForConditionalGeneration.from_pretrained(model_dir)
|
22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
+
print(f"Moving model to device: {device}")
|
24 |
+
model.to(device)
|
25 |
+
MODEL_CACHE[model_dir] = (tokenizer, model)
|
26 |
+
return MODEL_CACHE[model_dir]
|
27 |
+
|
28 |
+
max_input_length = 256
|
29 |
+
max_output_length = 256
|
30 |
+
|
31 |
+
@spaces.GPU()
|
32 |
+
def generate_response(instruction, input_text, seed, use_sampling, model_choice):
|
33 |
+
random.seed(seed)
|
34 |
+
np.random.seed(seed)
|
35 |
+
torch.manual_seed(seed)
|
36 |
+
if torch.cuda.is_available():
|
37 |
+
torch.cuda.manual_seed_all(seed)
|
38 |
+
|
39 |
+
model_dir = MODEL_OPTIONS_INSTRUCT[model_choice]
|
40 |
+
tokenizer, model = get_model_and_tokenizer(model_dir)
|
41 |
+
|
42 |
+
combined_input = f"{instruction.strip()} {input_text.strip()}" if input_text else instruction.strip()
|
43 |
+
inputs = tokenizer(
|
44 |
+
combined_input,
|
45 |
+
return_tensors="pt",
|
46 |
+
truncation=True,
|
47 |
+
max_length=max_input_length
|
48 |
+
)
|
49 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
50 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
51 |
+
|
52 |
+
gen_kwargs = {
|
53 |
+
"input_ids": inputs["input_ids"],
|
54 |
+
"attention_mask": inputs["attention_mask"],
|
55 |
+
"max_length": max_output_length,
|
56 |
+
"no_repeat_ngram_size": 3,
|
57 |
+
"repetition_penalty": 1.5,
|
58 |
+
}
|
59 |
+
|
60 |
+
if use_sampling:
|
61 |
+
gen_kwargs.update({
|
62 |
+
"do_sample": True,
|
63 |
+
"temperature": 0.1,
|
64 |
+
"num_return_sequences": 1,
|
65 |
+
"num_beams": 1,
|
66 |
+
})
|
67 |
+
else:
|
68 |
+
gen_kwargs.update({
|
69 |
+
"num_beams": 8,
|
70 |
+
"do_sample": False,
|
71 |
+
"early_stopping": True,
|
72 |
+
})
|
73 |
+
|
74 |
+
with torch.no_grad():
|
75 |
+
outputs = model.generate(**gen_kwargs)
|
76 |
+
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
77 |
+
return decoded_output
|