Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import spaces | |
# Available models | |
MODEL_OPTIONS_TRANSLATE = { | |
#"Flan-T5-A-Dhivehi-Latin Model": "alakxender/flan-t5-base-dhivehi-en-latin-v2", | |
"Flan-T5-B-Dhivehi-Latin Model": "alakxender/flan-t5-base-dhivehi-en-latin", | |
"MT5-B-Dhivehi-English Model": "alakxender/mt5-base-dv-en", | |
"MT5-B1-Dhivehi-English Model": "alakxender/mt5-base-dv-en-md", | |
} | |
# Cache for loaded models/tokenizers | |
MODEL_CACHE = {} | |
def get_model_and_tokenizer(model_dir): | |
if model_dir not in MODEL_CACHE: | |
print(f"Loading model: {model_dir}") | |
tokenizer = AutoTokenizer.from_pretrained(model_dir) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_dir) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Moving model to device: {device}") | |
model.to(device) | |
MODEL_CACHE[model_dir] = (tokenizer, model) | |
return MODEL_CACHE[model_dir] | |
max_input_length = 128 | |
max_output_length = 128 | |
def translate(instruction, input_text, model_choice, max_new_tokens=128, num_beams=4, repetition_penalty=1.2, no_repeat_ngram_size=3): | |
model_dir = MODEL_OPTIONS_TRANSLATE[model_choice] | |
tokenizer, model = get_model_and_tokenizer(model_dir) | |
combined_input = f"{instruction.strip()} {input_text.strip()}" if input_text else instruction.strip() | |
inputs = tokenizer( | |
combined_input, | |
return_tensors="pt", | |
truncation=True, | |
max_length=max_input_length | |
) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
gen_kwargs = { | |
**inputs, | |
"max_length":max_new_tokens, | |
"min_length":10, | |
"num_beams":num_beams, | |
"early_stopping":True, | |
"no_repeat_ngram_size":no_repeat_ngram_size, | |
"repetition_penalty":repetition_penalty, | |
"do_sample":False, | |
"pad_token_id":tokenizer.pad_token_id, | |
"eos_token_id":tokenizer.eos_token_id | |
} | |
with torch.no_grad(): | |
outputs = model.generate(**gen_kwargs) | |
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return decoded_output |