File size: 9,270 Bytes
8f97fc5
 
 
ae22b44
8f97fc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae22b44
8f97fc5
ae22b44
8f97fc5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env python
# Gradio app for Dhivehi typo correction

import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

# Load the fine-tuned model and tokenizer
MODEL_PATH = "alakxender/dhivehi-quick-spell-check-t5"  # Change this to your model path if different

# Function to load model and tokenizer
def load_model():
    print("Loading model and tokenizer...")
    try:
        tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
        
        model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_PATH)
        
        # Move model to GPU if available
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model = model.to(device)
        
        print(f"Model loaded successfully on {device}")
        return model, tokenizer, device
    except Exception as e:
        print(f"Error loading model: {e}")
        return None, None, None

# Function to correct typos (reverted to single output)
def correct_typo(text, model, tokenizer, device):
    if not text.strip():
        return "Please enter some text."
    
    try:
        # Prepare input with prefix
        input_text = "fix: " + text
        
        # Tokenize input
        inputs = tokenizer(input_text, return_tensors="pt", max_length=128, truncation=True)
        inputs = inputs.to(device)
        
        # Generate output
        with torch.no_grad():
            outputs = model.generate(
                input_ids=inputs["input_ids"],
                attention_mask=inputs.get("attention_mask", None),
                max_length=128,
                num_beams=4,
                early_stopping=True
            )
        
        # Decode the output
        corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        return corrected_text
    except Exception as e:
        return f"Error: {str(e)}"

# Initialize model and tokenizer
model, tokenizer, device = load_model()

if model is None:
    print("Failed to load model. Please check your model and tokenizer paths.")

# Function to highlight differences between original and corrected text
def highlight_differences(original, corrected):
    import difflib
    
    d = difflib.Differ()
    orig_words = original.split()
    corr_words = corrected.split()
    
    diff = list(d.compare(orig_words, corr_words))
    
    html_parts = []
    i = 0
    while i < len(diff):
        if diff[i].startswith('  '):  # Unchanged
            html_parts.append(f'<span>{diff[i][2:]}</span>')
        elif diff[i].startswith('- '):  # Removed
            if i + 1 < len(diff) and diff[i + 1].startswith('+ '):
                # Changed word - show correction
                old_word = diff[i][2:]
                new_word = diff[i + 1][2:]
                html_parts.append(f'<span style="background-color: #fff3cd">{old_word}</span>→<span style="background-color: #d4edda">{new_word}</span>')
                i += 1
            else:
                # Removed word
                html_parts.append(f'<span style="background-color: #f8d7da">{diff[i][2:]}</span>')
        elif diff[i].startswith('+ '):  # Added
            html_parts.append(f'<span style="background-color: #d4edda">{diff[i][2:]}</span>')
        i += 1
    
    return f'<div class="dhivehi-diff">{" ".join(html_parts)}</div>'

# Function to process the input for Gradio
def process_input(text):
    if model is None:
        return "Model not loaded. Please check your model and tokenizer paths.", ""
    
    corrected = correct_typo(text, model, tokenizer, device)
    highlighted = highlight_differences(text, corrected)
    return corrected, highlighted

# Define CSS for Dhivehi font styling
css = """
.textbox1 textarea {
    font-size: 18px !important;
    font-family: 'MV_Faseyha', 'Faruma', 'A_Faruma' !important;
    line-height: 1.8 !important;
    direction: rtl !important;
}

.dhivehi-text {
    font-size: 18px !important;
    font-family: 'MV_Faseyha', 'Faruma', 'A_Faruma' !important;
    line-height: 1.8 !important;
    direction: rtl !important;
    text-align: right !important;
    padding: 10px !important;
    background: transparent !important;  /* Make background transparent */
    border-radius: 4px !important;
    color: #ffffff !important;  /* White text for dark background */
}

/* Style for the highlighted differences */
.dhivehi-diff {
    font-size: 18px !important;
    font-family: 'MV_Faseyha', 'Faruma', 'A_Faruma' !important;
    line-height: 1.8 !important;
    direction: rtl !important;
    text-align: right !important;
    padding: 15px !important;
    background: transparent !important;  /* Make background transparent */
    border: 1px solid rgba(255, 255, 255, 0.1) !important;  /* Subtle border */
    border-radius: 4px !important;
    margin-top: 10px !important;
    color: #ffffff !important;  /* White text for dark background */
}

/* Ensure the highlighted spans have good contrast */
.dhivehi-diff span {
    padding: 2px 5px !important;
    border-radius: 3px !important;
    margin: 0 2px !important;
}

/* Original text (yellow background) */
.dhivehi-diff span[style*="background-color: #fff3cd"] {
    background-color: rgba(255, 243, 205, 0.2) !important;
    color: #ffd700 !important;  /* Golden yellow for visibility */
    border: 1px solid rgba(255, 243, 205, 0.3) !important;
}

/* Corrected text (green background) */
.dhivehi-diff span[style*="background-color: #d4edda"] {
    background-color: rgba(212, 237, 218, 0.2) !important;
    color: #98ff98 !important;  /* Light green for visibility */
    border: 1px solid rgba(212, 237, 218, 0.3) !important;
}

/* Removed text (red background) */
.dhivehi-diff span[style*="background-color: #f8d7da"] {
    background-color: rgba(248, 215, 218, 0.2) !important;
    color: #ff6b6b !important;  /* Light red for visibility */
    border: 1px solid rgba(248, 215, 218, 0.3) !important;
}

/* Arrow color */
.dhivehi-diff span:contains('→') {
    color: #ffffff !important;
}
"""

# Create Gradio interface using the latest syntax
with gr.Blocks(theme=gr.themes.Default(), css=css) as demo:
    gr.Markdown("# <center>Dhivehi Typo Correction</center>")
    gr.Markdown("This app uses a fine-tuned T5 model to correct typos in Dhivehi text. Enter text with typos and the model will attempt to fix them.")
    
    with gr.Row():
        input_text = gr.Textbox(
            lines=5,
            placeholder="ދިވެހި ބަހުން ލިޔުމެއް މިތާ ލިޔެބަލާ",
            label="Input Text",
            rtl=True,
            elem_classes="textbox1"
        )
    
    with gr.Row():
        corrected_text = gr.Textbox(
            lines=3,
            label="Corrected Text",
            rtl=True,
            elem_classes="textbox1"
        )
    
    with gr.Row():
        highlighted_diff = gr.HTML(
            label="Changes Highlighted",
            elem_classes="dhivehi-text"
        )
    
    submit_btn = gr.Button("ރަނގަޅު ކުރާ")  # "Correct" in Dhivehi
    submit_btn.click(
        fn=process_input,
        inputs=input_text,
        outputs=[corrected_text, highlighted_diff]
    )
    
    gr.Examples(
        examples=[
            ["މައި ނޭމް އިސް އަހްމދް"],  # My name is Ahmed (with typos)
            ["ވަރަށ ރައްގޅޭ ދއުވސް"],   # Very good day (with typos)
            ["މިއަދ ސްކޫލަށް ދިއުމަށްޓަކައި ހެނދުނ ވަރށް އަވަހށް ތެދުވިން"],  # I woke up early today to go to school (with typos)
            ["ރާއްޖެއަކީ ވަރށް ރީތި ގުދުރަތީ މަންޒަރުތައް ހުރި ގައުމެކެވެ"],  # Maldives is a country with beautiful natural scenery (with typos)
            ["ދިވެހި ބަހަކީ އަޅުގަނޑުމެންގެ މާދަރި ބަހެވ އަދި އެބަސް ދިރުވައި އާލާކުރން ޖެހެއވެ"],  # Dhivehi is our mother tongue and we need to preserve it (with typos)
            ["ކުޅިވަރަކީ ހަށިގަނޑގެ ދުޅަހެޔޮ ކަމަށް ވަރށް މުހިންމު ކަމެކެވެ"],  # Sports are very important for physical health (with typos)
        ],
        inputs=input_text,
    )

    gr.Markdown("""# Dhivehi Typo Correction App

This application uses a fine-tuned T5 model specifically designed to correct common typos in Dhivehi text. The model focuses on:

- Fixing common mistakes in diacritics
- Correcting missing Dhivehi letters
- Addressing typical typing errors

## What it can fix

The model works best with common typing mistakes. For example, if you type "ދިވެހ ބަސް" (missing a diacritic), the model will correct it properly.

## Limitations

The model is trained only on common errors and may not fix more complex or unusual mistakes. For instance, if you type "ދިވެހިދަ ބަސް" (with an incorrect vowel mark rather than a missing one), the correction might not work as expected.

Simply enter your Dhivehi text with typos, and the model will attempt to correct the common errors while preserving the meaning of your text.""")

# Launch the app
if __name__ == "__main__":
    demo.launch()