File size: 11,870 Bytes
c9b1ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import speech_recognition as sr
from sentiment import analyze_sentiment
from recommendations import ProductRecommender
from objection_handling import ObjectionHandler
from sheets import fetch_call_data, store_data_in_sheet
from sentence_transformers import SentenceTransformer
from setup import config
import re
import uuid
from google.oauth2 import service_account
from googleapiclient.discovery import build
import pandas as pd
import plotly.express as px
import plotly.graph_objs as go
import streamlit as st 

# Initialize components
product_recommender = ProductRecommender(r"C:\Users\Gowri Shankar\Downloads\AI-Sales-Call-Assistant--main\Sales_Calls_Transcriptions_Sheet2.csv")
objection_handler = ObjectionHandler(r"C:\Users\Gowri Shankar\Downloads\AI-Sales-Call-Assistant--main\Sales_Calls_Transcriptions_Sheet3.csv")
model = SentenceTransformer('all-MiniLM-L6-v2')

def generate_comprehensive_summary(chunks):
    """

    Generate a comprehensive summary from conversation chunks

    """
    # Extract full text from chunks
    full_text = " ".join([chunk[0] for chunk in chunks])
    
    # Perform basic analysis
    total_chunks = len(chunks)
    sentiments = [chunk[1] for chunk in chunks]
    
    # Determine overall conversation context
    context_keywords = {
        'product_inquiry': ['dress', 'product', 'price', 'stock'],
        'pricing': ['cost', 'price', 'budget'],
        'negotiation': ['installment', 'payment', 'manage']
    }
    
    # Detect conversation themes
    themes = []
    for keyword_type, keywords in context_keywords.items():
        if any(keyword.lower() in full_text.lower() for keyword in keywords):
            themes.append(keyword_type)
    
    # Basic sentiment analysis
    positive_count = sentiments.count('POSITIVE')
    negative_count = sentiments.count('NEGATIVE')
    neutral_count = sentiments.count('NEUTRAL')
    
    # Key interaction highlights
    key_interactions = []
    for chunk in chunks:
        if any(keyword.lower() in chunk[0].lower() for keyword in ['price', 'dress', 'stock', 'installment']):
            key_interactions.append(chunk[0])
    
    # Construct summary
    summary = f"Conversation Summary:\n"
    
    # Context and themes
    if 'product_inquiry' in themes:
        summary += "• Customer initiated a product inquiry about items.\n"
    
    if 'pricing' in themes:
        summary += "• Price and budget considerations were discussed.\n"
    
    if 'negotiation' in themes:
        summary += "• Customer and seller explored flexible payment options.\n"
    
    # Sentiment insights
    summary += f"\nConversation Sentiment:\n"
    summary += f"• Positive Interactions: {positive_count}\n"
    summary += f"• Negative Interactions: {negative_count}\n"
    summary += f"• Neutral Interactions: {neutral_count}\n"
    
    # Key highlights
    summary += "\nKey Conversation Points:\n"
    for interaction in key_interactions[:3]:  # Limit to top 3 key points
        summary += f"• {interaction}\n"
    
    # Conversation outcome
    if positive_count > negative_count:
        summary += "\nOutcome: Constructive and potentially successful interaction."
    elif negative_count > positive_count:
        summary += "\nOutcome: Interaction may require further follow-up."
    else:
        summary += "\nOutcome: Neutral interaction with potential for future engagement."
    
    return summary

def is_valid_input(text):
    text = text.strip().lower()
    if len(text) < 3 or re.match(r'^[a-zA-Z\s]*$', text) is None:
        return False
    return True

def is_relevant_sentiment(sentiment_score):
    return sentiment_score > 0.4

def calculate_overall_sentiment(sentiment_scores):
    if sentiment_scores:
        average_sentiment = sum(sentiment_scores) / len(sentiment_scores)
        overall_sentiment = (
            "POSITIVE" if average_sentiment > 0 else
            "NEGATIVE" if average_sentiment < 0 else
            "NEUTRAL"
        )
    else:
        overall_sentiment = "NEUTRAL"
    return overall_sentiment

def real_time_analysis():
    recognizer = sr.Recognizer()
    mic = sr.Microphone()

    st.info("Say 'stop' to end the process.")

    sentiment_scores = []
    transcribed_chunks = []
    total_text = ""

    try:
        while True:
            with mic as source:
                st.write("Listening...")
                recognizer.adjust_for_ambient_noise(source)
                audio = recognizer.listen(source)

            try:
                st.write("Recognizing...")
                text = recognizer.recognize_google(audio)
                st.write(f"*Recognized Text:* {text}")

                if 'stop' in text.lower():
                    st.write("Stopping real-time analysis...")
                    break

                # Append to the total conversation
                total_text += text + " "
                sentiment, score = analyze_sentiment(text)
                sentiment_scores.append(score)
                
                # Handle objection
                objection_response = handle_objection(text)

                # Get product recommendation
                recommendations = []
                if is_valid_input(text) and is_relevant_sentiment(score):
                    query_embedding = model.encode([text])
                    distances, indices = product_recommender.index.search(query_embedding, 1)

                    if distances[0][0] < 1.5:  # Similarity threshold
                        recommendations = product_recommender.get_recommendations(text)

                transcribed_chunks.append((text, sentiment, score))

                st.write(f"*Sentiment:* {sentiment} (Score: {score})")
                st.write(f"*Objection Response:* {objection_response}")
                
                if recommendations:
                    st.write("*Product Recommendations:*")
                    for rec in recommendations:
                        st.write(rec)

            except sr.UnknownValueError:
                st.error("Speech Recognition could not understand the audio.")
            except sr.RequestError as e:
                st.error(f"Error with the Speech Recognition service: {e}")
            except Exception as e:
                st.error(f"Error during processing: {e}")

        # After conversation ends, calculate and display overall sentiment and summary
        overall_sentiment = calculate_overall_sentiment(sentiment_scores)
        call_summary = generate_comprehensive_summary(transcribed_chunks)
        
        st.subheader("Conversation Summary:")
        st.write(total_text.strip())
        st.subheader("Overall Sentiment:")
        st.write(overall_sentiment)

        # Store data in Google Sheets
        store_data_in_sheet(
            config["google_sheet_id"], 
            transcribed_chunks, 
            call_summary, 
            overall_sentiment
        )
        st.success("Conversation data stored successfully in Google Sheets!")

    except Exception as e:
        st.error(f"Error in real-time analysis: {e}")

def handle_objection(text):
    query_embedding = model.encode([text])
    distances, indices = objection_handler.index.search(query_embedding, 1)
    if distances[0][0] < 1.5:  # Adjust similarity threshold as needed
        responses = objection_handler.handle_objection(text)
        return "\n".join(responses) if responses else "No objection response found."
    return "No objection response found."

# (Previous imports remain the same)

def run_app():
    st.set_page_config(page_title="Vocalytics", layout="wide")
    st.title("AI Sales Call Assistant")
    
    st.sidebar.title("Navigation")
    app_mode = st.sidebar.radio("Menu", ["Home","Real-Time Recommendations", "Analysis", "Full Call Summary"])

    if app_mode == "Home":
     st.title("Welcome to the AI Sales Assistant Dashboard!")
     st.markdown("""

        ### Features:

        - Real-Time Transcription: Live transcription with sentiment analysis.

        - Product Recommendations: Relevant suggestions based on customer conversations.

        - Objection Handling: Automatic detection and response to objections.

        - Data Summary: Historical insights stored in Google Sheets.

        - Analytics: Visualize trends and sentiment distribution.

    """)

    elif app_mode == "Real-Time Recommendations":
        st.header("Real-Time Recommendations ")
        if st.button("Start Listening"):
            real_time_analysis()

    elif app_mode == "Analysis":
        st.header("Call Summary and Analysis")
        try:
            data = fetch_call_data(config["google_sheet_id"])
            if data.empty:
                st.warning("No data available in the Google Sheet.")
            else:
                # Sentiment Visualizations
                sentiment_counts = data['Sentiment'].value_counts()
                
                # Pie Chart
                col1, col2 = st.columns(2)
                with col1:
                    st.subheader("Sentiment Distribution")
                    fig_pie = px.pie(
                        values=sentiment_counts.values, 
                        names=sentiment_counts.index, 
                        title='Call Sentiment Breakdown',
                        color_discrete_map={
                            'POSITIVE': 'green', 
                            'NEGATIVE': 'red', 
                            'NEUTRAL': 'pink'
                        }
                    )
                    st.plotly_chart(fig_pie)

                # Line Chart for Sentiment Over Time
                with col2:
                    st.subheader("Sentiment Over Time")
                    if 'Sentiment' in data.columns:
                        data['Index'] = range(1, len(data) + 1)  # Generate indices as time proxy
                        fig_line = px.line(
                            data, 
                            x='Index', 
                            y='Sentiment', 
                            title='Sentiment Trend During Calls',
                            markers=True,
                            labels={'Index': 'Call Progress (Sequential)', 'Sentiment': 'Sentiment'}
                        )
                        st.plotly_chart(fig_line)
                    else:
                        st.warning("Sentiment data is not available for trend visualization.")

                # Existing Call Details Section
                st.subheader("All Calls")
                display_data = data.copy()
                display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
                st.dataframe(display_data[['Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])

        except Exception as e:
            st.error(f"Error loading dashboard: {e}")

    elif app_mode == "Full Call Summary":
        st.header("Full Call Summary")
        try:
            data = fetch_call_data(config["google_sheet_id"])
            if data.empty:
                st.warning("No data available in the Google Sheet.")
            else:
                data = data.dropna(subset=['Chunk', 'Summary'])

                for index, row in data.iterrows():
                    st.text_area(
                        label=f"Call Summary {index+1}", 
                        value=row['Summary'], 
                        height=200, 
                        key=f"summary_{index}"
                    )
        except Exception as e:
            st.error(f"Error loading full call summary: {e}")

if __name__ == "__main__":
    run_app()