import os import re from http import HTTPStatus from typing import Dict, List, Optional, Tuple import base64 import mimetypes import PyPDF2 import docx import cv2 import numpy as np from PIL import Image import pytesseract import gradio as gr from huggingface_hub import InferenceClient from tavily import TavilyClient # Configuration SystemPrompt = """You are a helpful coding assistant. You help users create applications by generating code based on their requirements. When asked to create an application, you should: 1. Understand the user's requirements 2. Generate clean, working code 3. Provide HTML output when appropriate for web applications 4. Include necessary comments and documentation 5. Ensure the code is functional and follows best practices If an image is provided, analyze it and use the visual information to better understand the user's requirements. Always respond with code that can be executed or rendered directly. Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text.""" # System prompt with search capability SystemPromptWithSearch = """You are a helpful coding assistant with access to real-time web search. You help users create applications by generating code based on their requirements. When asked to create an application, you should: 1. Understand the user's requirements 2. Use web search when needed to find the latest information, best practices, or specific technologies 3. Generate clean, working code 4. Provide HTML output when appropriate for web applications 5. Include necessary comments and documentation 6. Ensure the code is functional and follows best practices If an image is provided, analyze it and use the visual information to better understand the user's requirements. Always respond with code that can be executed or rendered directly. Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text.""" # Available models AVAILABLE_MODELS = [ { "name": "DeepSeek V3", "id": "deepseek-ai/DeepSeek-V3-0324", "description": "DeepSeek V3 model for code generation" }, { "name": "DeepSeek R1", "id": "deepseek-ai/DeepSeek-R1-0528", "description": "DeepSeek R1 model for code generation" }, { "name": "ERNIE-4.5-VL", "id": "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT", "description": "ERNIE-4.5-VL model for multimodal code generation with image support" }, { "name": "MiniMax M1", "id": "MiniMaxAI/MiniMax-M1-80k", "description": "MiniMax M1 model for code generation and general tasks" }, { "name": "Qwen3-235B-A22B", "id": "Qwen/Qwen3-235B-A22B", "description": "Qwen3-235B-A22B model for code generation and general tasks" }, { "name": "SmolLM3-3B", "id": "HuggingFaceTB/SmolLM3-3B", "description": "SmolLM3-3B model for code generation and general tasks" } ] DEMO_LIST = [ { "title": "Todo App", "description": "Create a simple todo application with add, delete, and mark as complete functionality" }, { "title": "Calculator", "description": "Build a basic calculator with addition, subtraction, multiplication, and division" }, { "title": "Weather Dashboard", "description": "Create a weather dashboard that displays current weather information" }, { "title": "Chat Interface", "description": "Build a chat interface with message history and user input" }, { "title": "E-commerce Product Card", "description": "Create a product card component for an e-commerce website" }, { "title": "Login Form", "description": "Build a responsive login form with validation" }, { "title": "Dashboard Layout", "description": "Create a dashboard layout with sidebar navigation and main content area" }, { "title": "Data Table", "description": "Build a data table with sorting and filtering capabilities" }, { "title": "Image Gallery", "description": "Create an image gallery with lightbox functionality and responsive grid layout" }, { "title": "UI from Image", "description": "Upload an image of a UI design and I'll generate the HTML/CSS code for it" }, { "title": "Extract Text from Image", "description": "Upload an image containing text and I'll extract and process the text content" } ] # HF Inference Client YOUR_API_TOKEN = os.getenv('HF_TOKEN') client = InferenceClient( provider="auto", api_key=YOUR_API_TOKEN, bill_to="huggingface" ) # Tavily Search Client TAVILY_API_KEY = os.getenv('TAVILY_API_KEY') tavily_client = None if TAVILY_API_KEY: try: tavily_client = TavilyClient(api_key=TAVILY_API_KEY) except Exception as e: print(f"Failed to initialize Tavily client: {e}") tavily_client = None History = List[Tuple[str, str]] Messages = List[Dict[str, str]] def history_to_messages(history: History, system: str) -> Messages: messages = [{'role': 'system', 'content': system}] for h in history: # Handle multimodal content in history user_content = h[0] if isinstance(user_content, list): # Extract text from multimodal content text_content = "" for item in user_content: if isinstance(item, dict) and item.get("type") == "text": text_content += item.get("text", "") user_content = text_content if text_content else str(user_content) messages.append({'role': 'user', 'content': user_content}) messages.append({'role': 'assistant', 'content': h[1]}) return messages def messages_to_history(messages: Messages) -> Tuple[str, History]: assert messages[0]['role'] == 'system' history = [] for q, r in zip(messages[1::2], messages[2::2]): # Extract text content from multimodal messages for history user_content = q['content'] if isinstance(user_content, list): text_content = "" for item in user_content: if isinstance(item, dict) and item.get("type") == "text": text_content += item.get("text", "") user_content = text_content if text_content else str(user_content) history.append([user_content, r['content']]) return history def history_to_chatbot_messages(history: History) -> List[Dict[str, str]]: """Convert history tuples to chatbot message format""" messages = [] for user_msg, assistant_msg in history: # Handle multimodal content if isinstance(user_msg, list): text_content = "" for item in user_msg: if isinstance(item, dict) and item.get("type") == "text": text_content += item.get("text", "") user_msg = text_content if text_content else str(user_msg) messages.append({"role": "user", "content": user_msg}) messages.append({"role": "assistant", "content": assistant_msg}) return messages def remove_code_block(text): # Try to match code blocks with language markers patterns = [ r'```(?:html|HTML)\n([\s\S]+?)\n```', # Match ```html or ```HTML r'```\n([\s\S]+?)\n```', # Match code blocks without language markers r'```([\s\S]+?)```' # Match code blocks without line breaks ] for pattern in patterns: match = re.search(pattern, text, re.DOTALL) if match: extracted = match.group(1).strip() return extracted # If no code block is found, check if the entire text is HTML if text.strip().startswith('') or text.strip().startswith(' str: """Perform web search using Tavily with default parameters""" if not tavily_client: return "Web search is not available. Please set the TAVILY_API_KEY environment variable." try: # Use Tavily defaults with advanced search depth for better results search_params = { "search_depth": "advanced", "max_results": min(max(1, max_results), 20) } if include_domains is not None: search_params["include_domains"] = include_domains if exclude_domains is not None: search_params["exclude_domains"] = exclude_domains response = tavily_client.search(query, **search_params) search_results = [] for result in response.get('results', []): title = result.get('title', 'No title') url = result.get('url', 'No URL') content = result.get('content', 'No content') search_results.append(f"Title: {title}\nURL: {url}\nContent: {content}\n") if search_results: return "Web Search Results:\n\n" + "\n---\n".join(search_results) else: return "No search results found." except Exception as e: return f"Search error: {str(e)}" def enhance_query_with_search(query: str, enable_search: bool) -> str: """Enhance the query with web search results if search is enabled""" if not enable_search or not tavily_client: return query # Perform search to get relevant information search_results = perform_web_search(query) # Combine original query with search results enhanced_query = f"""Original Query: {query} {search_results} Please use the search results above to help create the requested application with the most up-to-date information and best practices.""" return enhanced_query def send_to_sandbox(code): # Add a wrapper to inject necessary permissions and ensure full HTML wrapped_code = f"""
{code} """ encoded_html = base64.b64encode(wrapped_code.encode('utf-8')).decode('utf-8') data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}" iframe = f'' return iframe def demo_card_click(e: gr.EventData): try: # Get the index from the event data if hasattr(e, '_data') and e._data: # Try different ways to get the index if 'index' in e._data: index = e._data['index'] elif 'component' in e._data and 'index' in e._data['component']: index = e._data['component']['index'] elif 'target' in e._data and 'index' in e._data['target']: index = e._data['target']['index'] else: # If we can't get the index, try to extract it from the card data index = 0 else: index = 0 # Ensure index is within bounds if index >= len(DEMO_LIST): index = 0 return DEMO_LIST[index]['description'] except (KeyError, IndexError, AttributeError) as e: # Return the first demo description as fallback return DEMO_LIST[0]['description'] def extract_text_from_image(image_path): """Extract text from image using OCR""" try: # Check if tesseract is available try: pytesseract.get_tesseract_version() except Exception: return "Error: Tesseract OCR is not installed. Please install Tesseract to extract text from images. See install_tesseract.md for instructions." # Read image using OpenCV image = cv2.imread(image_path) if image is None: return "Error: Could not read image file" # Convert to RGB (OpenCV uses BGR) image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Preprocess image for better OCR results # Convert to grayscale gray = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2GRAY) # Apply thresholding to get binary image _, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # Extract text using pytesseract text = pytesseract.image_to_string(binary, config='--psm 6') return text.strip() if text.strip() else "No text found in image" except Exception as e: return f"Error extracting text from image: {e}" def extract_text_from_file(file_path): if not file_path: return "" mime, _ = mimetypes.guess_type(file_path) ext = os.path.splitext(file_path)[1].lower() try: if ext == ".pdf": with open(file_path, "rb") as f: reader = PyPDF2.PdfReader(f) return "\n".join(page.extract_text() or "" for page in reader.pages) elif ext in [".txt", ".md"]: with open(file_path, "r", encoding="utf-8") as f: return f.read() elif ext == ".csv": with open(file_path, "r", encoding="utf-8") as f: return f.read() elif ext == ".docx": doc = docx.Document(file_path) return "\n".join([para.text for para in doc.paragraphs]) elif ext.lower() in [".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".tif", ".gif", ".webp"]: return extract_text_from_image(file_path) else: return "" except Exception as e: return f"Error extracting text: {e}" def generation_code(query: Optional[str], image: Optional[gr.Image], file: Optional[str], _setting: Dict[str, str], _history: Optional[History], _current_model: Dict, enable_search: bool = False): if query is None: query = '' if _history is None: _history = [] # Choose system prompt based on search setting system_prompt = SystemPromptWithSearch if enable_search else _setting['system'] messages = history_to_messages(_history, system_prompt) # Extract file text and append to query if file is present file_text = "" if file: file_text = extract_text_from_file(file) if file_text: file_text = file_text[:5000] # Limit to 5000 chars for prompt size query = f"{query}\n\n[Reference file content below]\n{file_text}" # Enhance query with search if enabled enhanced_query = enhance_query_with_search(query, enable_search) if image is not None: messages.append(create_multimodal_message(enhanced_query, image)) else: messages.append({'role': 'user', 'content': enhanced_query}) try: completion = client.chat.completions.create( model=_current_model["id"], messages=messages, stream=True, max_tokens=5000 ) content = "" for chunk in completion: if chunk.choices[0].delta.content: content += chunk.choices[0].delta.content clean_code = remove_code_block(content) search_status = " (with web search)" if enable_search and tavily_client else "" yield { code_output: clean_code, status_indicator: f' ', history_output: history_to_chatbot_messages(_history), } _history = messages_to_history(messages + [{ 'role': 'assistant', 'content': content }]) yield { code_output: remove_code_block(content), history: _history, sandbox: send_to_sandbox(remove_code_block(content)), status_indicator: '