import os import re from http import HTTPStatus from typing import Dict, List, Optional, Tuple import base64 import mimetypes import PyPDF2 import docx import cv2 import numpy as np from PIL import Image import pytesseract import requests from urllib.parse import urlparse, urljoin from bs4 import BeautifulSoup import html2text import json import time import webbrowser import urllib.parse import copy import html import gradio as gr from huggingface_hub import InferenceClient from tavily import TavilyClient from huggingface_hub import HfApi import tempfile from openai import OpenAI import uuid import datetime from mistralai import Mistral import shutil import urllib.parse import mimetypes import threading import atexit import asyncio from datetime import datetime, timedelta from typing import Optional # Gradio supported languages for syntax highlighting GRADIO_SUPPORTED_LANGUAGES = [ "python", "c", "cpp", "markdown", "latex", "json", "html", "css", "javascript", "jinja2", "typescript", "yaml", "dockerfile", "shell", "r", "sql", "sql-msSQL", "sql-mySQL", "sql-mariaDB", "sql-sqlite", "sql-cassandra", "sql-plSQL", "sql-hive", "sql-pgSQL", "sql-gql", "sql-gpSQL", "sql-sparkSQL", "sql-esper", None ] def get_gradio_language(language): # Map composite options to a supported syntax highlighting if language == "streamlit": return "python" if language == "gradio": return "python" return language if language in GRADIO_SUPPORTED_LANGUAGES else None # Search/Replace Constants SEARCH_START = "<<<<<<< SEARCH" DIVIDER = "=======" REPLACE_END = ">>>>>>> REPLACE" # Gradio Documentation Auto-Update System GRADIO_LLMS_TXT_URL = "https://www.gradio.app/llms.txt" GRADIO_DOCS_CACHE_FILE = ".gradio_docs_cache.txt" GRADIO_DOCS_LAST_UPDATE_FILE = ".gradio_docs_last_update.txt" GRADIO_DOCS_UPDATE_ON_APP_UPDATE = True # Only update when app is updated, not on a timer # Global variable to store the current Gradio documentation _gradio_docs_content: Optional[str] = None _gradio_docs_last_fetched: Optional[datetime] = None def fetch_gradio_docs() -> Optional[str]: """Fetch the latest Gradio documentation from llms.txt""" try: response = requests.get(GRADIO_LLMS_TXT_URL, timeout=10) response.raise_for_status() return response.text except Exception as e: print(f"Warning: Failed to fetch Gradio docs from {GRADIO_LLMS_TXT_URL}: {e}") return None def load_cached_gradio_docs() -> Optional[str]: """Load cached Gradio documentation from file""" try: if os.path.exists(GRADIO_DOCS_CACHE_FILE): with open(GRADIO_DOCS_CACHE_FILE, 'r', encoding='utf-8') as f: return f.read() except Exception as e: print(f"Warning: Failed to load cached Gradio docs: {e}") return None def save_gradio_docs_cache(content: str): """Save Gradio documentation to cache file""" try: with open(GRADIO_DOCS_CACHE_FILE, 'w', encoding='utf-8') as f: f.write(content) with open(GRADIO_DOCS_LAST_UPDATE_FILE, 'w', encoding='utf-8') as f: f.write(datetime.now().isoformat()) except Exception as e: print(f"Warning: Failed to save Gradio docs cache: {e}") def get_last_update_time() -> Optional[datetime]: """Get the last update time from file""" try: if os.path.exists(GRADIO_DOCS_LAST_UPDATE_FILE): with open(GRADIO_DOCS_LAST_UPDATE_FILE, 'r', encoding='utf-8') as f: return datetime.fromisoformat(f.read().strip()) except Exception as e: print(f"Warning: Failed to read last update time: {e}") return None def should_update_gradio_docs() -> bool: """Check if Gradio documentation should be updated""" # Only update if we don't have cached content (first run or cache deleted) return not os.path.exists(GRADIO_DOCS_CACHE_FILE) def force_update_gradio_docs(): """ Force an update of Gradio documentation (useful when app is updated). To manually refresh docs, you can call this function or simply delete the cache file: rm .gradio_docs_cache.txt && restart the app """ global _gradio_docs_content, _gradio_docs_last_fetched print("πŸ”„ Forcing Gradio documentation update...") latest_content = fetch_gradio_docs() if latest_content: _gradio_docs_content = latest_content _gradio_docs_last_fetched = datetime.now() save_gradio_docs_cache(latest_content) update_gradio_system_prompts() print("βœ… Gradio documentation updated successfully") return True else: print("❌ Failed to update Gradio documentation") return False def get_gradio_docs_content() -> str: """Get the current Gradio documentation content, updating if necessary""" global _gradio_docs_content, _gradio_docs_last_fetched # Check if we need to update if (_gradio_docs_content is None or _gradio_docs_last_fetched is None or should_update_gradio_docs()): print("Updating Gradio documentation...") # Try to fetch latest content latest_content = fetch_gradio_docs() if latest_content: _gradio_docs_content = latest_content _gradio_docs_last_fetched = datetime.now() save_gradio_docs_cache(latest_content) print("βœ… Gradio documentation updated successfully") else: # Fallback to cached content cached_content = load_cached_gradio_docs() if cached_content: _gradio_docs_content = cached_content _gradio_docs_last_fetched = datetime.now() print("⚠️ Using cached Gradio documentation (network fetch failed)") else: # Fallback to minimal content _gradio_docs_content = """ # Gradio API Reference (Offline Fallback) This is a minimal fallback when documentation cannot be fetched. Please check your internet connection for the latest API reference. Basic Gradio components: Button, Textbox, Slider, Image, Audio, Video, File, etc. Use gr.Blocks() for custom layouts and gr.Interface() for simple apps. """ print("❌ Using minimal fallback documentation") return _gradio_docs_content or "" def update_gradio_system_prompts(): """Update the global Gradio system prompts with latest documentation""" global GRADIO_SYSTEM_PROMPT, GRADIO_SYSTEM_PROMPT_WITH_SEARCH docs_content = get_gradio_docs_content() # Base system prompt base_prompt = """You are an expert Gradio developer. Write clean, idiomatic, and runnable Gradio applications for the user's request. Use the latest Gradio API and best practices. Output ONLY the code inside a ``` code block, and do not include any explanations or extra text. If the user provides a file or other context, use it as a reference. Make the app as self-contained as possible. Do NOT add the language name at the top of the code output. 🚨 IMPORTANT: If the user is asking to use external APIs (like OpenRouter, OpenAI API, Hugging Face Inference API, etc.), DO NOT use @spaces.GPU decorators or any ZeroGPU features. External APIs handle the model inference remotely, so GPU allocation on the Spaces instance is not needed. 🚨 CRITICAL REQUIREMENT: If the user provides ANY diffusion model code (FLUX, Stable Diffusion, etc.) that runs locally (not via API), you MUST implement ZeroGPU ahead-of-time (AoT) compilation. This is mandatory and provides 1.3x-1.8x performance improvements. Do not create basic Gradio apps without AoT optimization for diffusion models. ## ZeroGPU Integration (MANDATORY) ALWAYS use ZeroGPU for GPU-dependent functions in Gradio apps: 1. Import the spaces module: `import spaces` 2. Decorate GPU-dependent functions with `@spaces.GPU` 3. Specify appropriate duration based on expected runtime: - Quick inference (< 30s): `@spaces.GPU(duration=30)` - Standard generation (30-60s): `@spaces.GPU` (default 60s) - Complex generation (60-120s): `@spaces.GPU(duration=120)` - Heavy processing (120-180s): `@spaces.GPU(duration=180)` Example usage: ```python import spaces from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained(...) pipe.to('cuda') @spaces.GPU(duration=120) def generate(prompt): return pipe(prompt).images gr.Interface( fn=generate, inputs=gr.Text(), outputs=gr.Gallery(), ).launch() ``` Duration Guidelines: - Shorter durations improve queue priority for users - Text-to-image: typically 30-60 seconds - Image-to-image: typically 20-40 seconds - Video generation: typically 60-180 seconds - Audio/music generation: typically 30-90 seconds - Model loading + inference: add 10-30s buffer - AoT compilation during startup: use @spaces.GPU(duration=1500) for maximum allowed duration Functions that typically need @spaces.GPU: - Image generation (text-to-image, image-to-image) - Video generation - Audio/music generation - Model inference with transformers, diffusers - Any function using .to('cuda') or GPU operations ## CRITICAL: Use ZeroGPU AoT Compilation for ALL Diffusion Models FOR ANY DIFFUSION MODEL (FLUX, Stable Diffusion, etc.), YOU MUST IMPLEMENT AHEAD-OF-TIME COMPILATION. This is NOT optional - it provides 1.3x-1.8x speedup and is essential for production ZeroGPU Spaces. ALWAYS implement this pattern for diffusion models: ### MANDATORY: Basic AoT Compilation Pattern YOU MUST USE THIS EXACT PATTERN for any diffusion model (FLUX, Stable Diffusion, etc.): 1. ALWAYS add AoT compilation function with @spaces.GPU(duration=1500) 2. ALWAYS use spaces.aoti_capture to capture inputs 3. ALWAYS use torch.export.export to export the transformer 4. ALWAYS use spaces.aoti_compile to compile 5. ALWAYS use spaces.aoti_apply to apply to pipeline ### Required AoT Implementation ```python import spaces import torch from diffusers import DiffusionPipeline MODEL_ID = 'black-forest-labs/FLUX.1-dev' pipe = DiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16) pipe.to('cuda') @spaces.GPU(duration=1500) # Maximum duration allowed during startup def compile_transformer(): # 1. Capture example inputs with spaces.aoti_capture(pipe.transformer) as call: pipe("arbitrary example prompt") # 2. Export the model exported = torch.export.export( pipe.transformer, args=call.args, kwargs=call.kwargs, ) # 3. Compile the exported model return spaces.aoti_compile(exported) # 4. Apply compiled model to pipeline compiled_transformer = compile_transformer() spaces.aoti_apply(compiled_transformer, pipe.transformer) @spaces.GPU def generate(prompt): return pipe(prompt).images ``` ### Advanced Optimizations #### FP8 Quantization (Additional 1.2x speedup on H200) ```python from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig @spaces.GPU(duration=1500) def compile_transformer_with_quantization(): # Quantize before export for FP8 speedup quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig()) with spaces.aoti_capture(pipe.transformer) as call: pipe("arbitrary example prompt") exported = torch.export.export( pipe.transformer, args=call.args, kwargs=call.kwargs, ) return spaces.aoti_compile(exported) ``` #### Dynamic Shapes (Variable input sizes) ```python from torch.utils._pytree import tree_map @spaces.GPU(duration=1500) def compile_transformer_dynamic(): with spaces.aoti_capture(pipe.transformer) as call: pipe("arbitrary example prompt") # Define dynamic dimension ranges (model-dependent) transformer_hidden_dim = torch.export.Dim('hidden', min=4096, max=8212) # Map argument names to dynamic dimensions transformer_dynamic_shapes = { "hidden_states": {1: transformer_hidden_dim}, "img_ids": {0: transformer_hidden_dim}, } # Create dynamic shapes structure dynamic_shapes = tree_map(lambda v: None, call.kwargs) dynamic_shapes.update(transformer_dynamic_shapes) exported = torch.export.export( pipe.transformer, args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes, ) return spaces.aoti_compile(exported) ``` #### Multi-Compile for Different Resolutions ```python @spaces.GPU(duration=1500) def compile_multiple_resolutions(): compiled_models = {} resolutions = [(512, 512), (768, 768), (1024, 1024)] for width, height in resolutions: # Capture inputs for specific resolution with spaces.aoti_capture(pipe.transformer) as call: pipe(f"test prompt {width}x{height}", width=width, height=height) exported = torch.export.export( pipe.transformer, args=call.args, kwargs=call.kwargs, ) compiled_models[f"{width}x{height}"] = spaces.aoti_compile(exported) return compiled_models # Usage with resolution dispatch compiled_models = compile_multiple_resolutions() @spaces.GPU def generate_with_resolution(prompt, width=1024, height=1024): resolution_key = f"{width}x{height}" if resolution_key in compiled_models: # Temporarily apply the right compiled model spaces.aoti_apply(compiled_models[resolution_key], pipe.transformer) return pipe(prompt, width=width, height=height).images ``` #### FlashAttention-3 Integration ```python from kernels import get_kernel # Load pre-built FA3 kernel compatible with H200 try: vllm_flash_attn3 = get_kernel("kernels-community/vllm-flash-attn3") print("βœ… FlashAttention-3 kernel loaded successfully") except Exception as e: print(f"⚠️ FlashAttention-3 not available: {e}") # Custom attention processor example class FlashAttention3Processor: def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None): # Use FA3 kernel for attention computation return vllm_flash_attn3(hidden_states, encoder_hidden_states, attention_mask) # Apply FA3 processor to model if 'vllm_flash_attn3' in locals(): for name, module in pipe.transformer.named_modules(): if hasattr(module, 'processor'): module.processor = FlashAttention3Processor() ``` ### Complete Optimized Example ```python import spaces import torch from diffusers import DiffusionPipeline from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig MODEL_ID = 'black-forest-labs/FLUX.1-dev' pipe = DiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16) pipe.to('cuda') @spaces.GPU(duration=1500) def compile_optimized_transformer(): # Apply FP8 quantization quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig()) # Capture inputs with spaces.aoti_capture(pipe.transformer) as call: pipe("optimization test prompt") # Export and compile exported = torch.export.export( pipe.transformer, args=call.args, kwargs=call.kwargs, ) return spaces.aoti_compile(exported) # Compile during startup compiled_transformer = compile_optimized_transformer() spaces.aoti_apply(compiled_transformer, pipe.transformer) @spaces.GPU def generate(prompt): return pipe(prompt).images ``` **Expected Performance Gains:** - Basic AoT: 1.3x-1.8x speedup - + FP8 Quantization: Additional 1.2x speedup - + FlashAttention-3: Additional attention speedup - Total potential: 2x-3x faster inference **Hardware Requirements:** - FP8 quantization requires CUDA compute capability β‰₯ 9.0 (H200 βœ…) - FlashAttention-3 works on H200 hardware via kernels library - Dynamic shapes add flexibility for variable input sizes ## Complete Gradio API Reference This reference is automatically synced from https://www.gradio.app/llms.txt to ensure accuracy. """ # Search-enabled prompt search_prompt = """You are an expert Gradio developer with access to real-time web search. Write clean, idiomatic, and runnable Gradio applications for the user's request. Use the latest Gradio API and best practices. When needed, use web search to find current best practices or verify latest Gradio features. Output ONLY the code inside a ``` code block, and do not include any explanations or extra text. If the user provides a file or other context, use it as a reference. Make the app as self-contained as possible. Do NOT add the language name at the top of the code output. 🚨 IMPORTANT: If the user is asking to use external APIs (like OpenRouter, OpenAI API, Hugging Face Inference API, etc.), DO NOT use @spaces.GPU decorators or any ZeroGPU features. External APIs handle the model inference remotely, so GPU allocation on the Spaces instance is not needed. 🚨 CRITICAL REQUIREMENT: If the user provides ANY diffusion model code (FLUX, Stable Diffusion, etc.) that runs locally (not via API), you MUST implement ZeroGPU ahead-of-time (AoT) compilation. This is mandatory and provides 1.3x-1.8x performance improvements. Do not create basic Gradio apps without AoT optimization for diffusion models. ## ZeroGPU Integration (MANDATORY) ALWAYS use ZeroGPU for GPU-dependent functions in Gradio apps: 1. Import the spaces module: `import spaces` 2. Decorate GPU-dependent functions with `@spaces.GPU` 3. Specify appropriate duration based on expected runtime: - Quick inference (< 30s): `@spaces.GPU(duration=30)` - Standard generation (30-60s): `@spaces.GPU` (default 60s) - Complex generation (60-120s): `@spaces.GPU(duration=120)` - Heavy processing (120-180s): `@spaces.GPU(duration=180)` Example usage: ```python import spaces from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained(...) pipe.to('cuda') @spaces.GPU(duration=120) def generate(prompt): return pipe(prompt).images gr.Interface( fn=generate, inputs=gr.Text(), outputs=gr.Gallery(), ).launch() ``` Duration Guidelines: - Shorter durations improve queue priority for users - Text-to-image: typically 30-60 seconds - Image-to-image: typically 20-40 seconds - Video generation: typically 60-180 seconds - Audio/music generation: typically 30-90 seconds - Model loading + inference: add 10-30s buffer - AoT compilation during startup: use @spaces.GPU(duration=1500) for maximum allowed duration Functions that typically need @spaces.GPU: - Image generation (text-to-image, image-to-image) - Video generation - Audio/music generation - Model inference with transformers, diffusers - Any function using .to('cuda') or GPU operations ## CRITICAL: Use ZeroGPU AoT Compilation for ALL Diffusion Models FOR ANY DIFFUSION MODEL (FLUX, Stable Diffusion, etc.), YOU MUST IMPLEMENT AHEAD-OF-TIME COMPILATION. This is NOT optional - it provides 1.3x-1.8x speedup and is essential for production ZeroGPU Spaces. ALWAYS implement this pattern for diffusion models: ### MANDATORY: Basic AoT Compilation Pattern YOU MUST USE THIS EXACT PATTERN for any diffusion model (FLUX, Stable Diffusion, etc.): 1. ALWAYS add AoT compilation function with @spaces.GPU(duration=1500) 2. ALWAYS use spaces.aoti_capture to capture inputs 3. ALWAYS use torch.export.export to export the transformer 4. ALWAYS use spaces.aoti_compile to compile 5. ALWAYS use spaces.aoti_apply to apply to pipeline ### Required AoT Implementation For production Spaces with heavy models, use ahead-of-time (AoT) compilation for 1.3x-1.8x speedups: ### Basic AoT Compilation ```python import spaces import torch from diffusers import DiffusionPipeline MODEL_ID = 'black-forest-labs/FLUX.1-dev' pipe = DiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16) pipe.to('cuda') @spaces.GPU(duration=1500) # Maximum duration allowed during startup def compile_transformer(): # 1. Capture example inputs with spaces.aoti_capture(pipe.transformer) as call: pipe("arbitrary example prompt") # 2. Export the model exported = torch.export.export( pipe.transformer, args=call.args, kwargs=call.kwargs, ) # 3. Compile the exported model return spaces.aoti_compile(exported) # 4. Apply compiled model to pipeline compiled_transformer = compile_transformer() spaces.aoti_apply(compiled_transformer, pipe.transformer) @spaces.GPU def generate(prompt): return pipe(prompt).images ``` ### Advanced Optimizations #### FP8 Quantization (Additional 1.2x speedup on H200) ```python from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig @spaces.GPU(duration=1500) def compile_transformer_with_quantization(): # Quantize before export for FP8 speedup quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig()) with spaces.aoti_capture(pipe.transformer) as call: pipe("arbitrary example prompt") exported = torch.export.export( pipe.transformer, args=call.args, kwargs=call.kwargs, ) return spaces.aoti_compile(exported) ``` #### Dynamic Shapes (Variable input sizes) ```python from torch.utils._pytree import tree_map @spaces.GPU(duration=1500) def compile_transformer_dynamic(): with spaces.aoti_capture(pipe.transformer) as call: pipe("arbitrary example prompt") # Define dynamic dimension ranges (model-dependent) transformer_hidden_dim = torch.export.Dim('hidden', min=4096, max=8212) # Map argument names to dynamic dimensions transformer_dynamic_shapes = { "hidden_states": {1: transformer_hidden_dim}, "img_ids": {0: transformer_hidden_dim}, } # Create dynamic shapes structure dynamic_shapes = tree_map(lambda v: None, call.kwargs) dynamic_shapes.update(transformer_dynamic_shapes) exported = torch.export.export( pipe.transformer, args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes, ) return spaces.aoti_compile(exported) ``` #### Multi-Compile for Different Resolutions ```python @spaces.GPU(duration=1500) def compile_multiple_resolutions(): compiled_models = {} resolutions = [(512, 512), (768, 768), (1024, 1024)] for width, height in resolutions: # Capture inputs for specific resolution with spaces.aoti_capture(pipe.transformer) as call: pipe(f"test prompt {width}x{height}", width=width, height=height) exported = torch.export.export( pipe.transformer, args=call.args, kwargs=call.kwargs, ) compiled_models[f"{width}x{height}"] = spaces.aoti_compile(exported) return compiled_models # Usage with resolution dispatch compiled_models = compile_multiple_resolutions() @spaces.GPU def generate_with_resolution(prompt, width=1024, height=1024): resolution_key = f"{width}x{height}" if resolution_key in compiled_models: # Temporarily apply the right compiled model spaces.aoti_apply(compiled_models[resolution_key], pipe.transformer) return pipe(prompt, width=width, height=height).images ``` #### FlashAttention-3 Integration ```python from kernels import get_kernel # Load pre-built FA3 kernel compatible with H200 try: vllm_flash_attn3 = get_kernel("kernels-community/vllm-flash-attn3") print("βœ… FlashAttention-3 kernel loaded successfully") except Exception as e: print(f"⚠️ FlashAttention-3 not available: {e}") # Custom attention processor example class FlashAttention3Processor: def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None): # Use FA3 kernel for attention computation return vllm_flash_attn3(hidden_states, encoder_hidden_states, attention_mask) # Apply FA3 processor to model if 'vllm_flash_attn3' in locals(): for name, module in pipe.transformer.named_modules(): if hasattr(module, 'processor'): module.processor = FlashAttention3Processor() ``` ### Complete Optimized Example ```python import spaces import torch from diffusers import DiffusionPipeline from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig MODEL_ID = 'black-forest-labs/FLUX.1-dev' pipe = DiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16) pipe.to('cuda') @spaces.GPU(duration=1500) def compile_optimized_transformer(): # Apply FP8 quantization quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig()) # Capture inputs with spaces.aoti_capture(pipe.transformer) as call: pipe("optimization test prompt") # Export and compile exported = torch.export.export( pipe.transformer, args=call.args, kwargs=call.kwargs, ) return spaces.aoti_compile(exported) # Compile during startup compiled_transformer = compile_optimized_transformer() spaces.aoti_apply(compiled_transformer, pipe.transformer) @spaces.GPU def generate(prompt): return pipe(prompt).images ``` **Expected Performance Gains:** - Basic AoT: 1.3x-1.8x speedup - + FP8 Quantization: Additional 1.2x speedup - + FlashAttention-3: Additional attention speedup - Total potential: 2x-3x faster inference **Hardware Requirements:** - FP8 quantization requires CUDA compute capability β‰₯ 9.0 (H200 βœ…) - FlashAttention-3 works on H200 hardware via kernels library - Dynamic shapes add flexibility for variable input sizes ## Complete Gradio API Reference This reference is automatically synced from https://www.gradio.app/llms.txt to ensure accuracy. """ # Update the prompts GRADIO_SYSTEM_PROMPT = base_prompt + docs_content + "\n\nAlways use the exact function signatures from this API reference and follow modern Gradio patterns." GRADIO_SYSTEM_PROMPT_WITH_SEARCH = search_prompt + docs_content + "\n\nAlways use the exact function signatures from this API reference and follow modern Gradio patterns." # Initialize Gradio documentation on startup def initialize_gradio_docs(): """Initialize Gradio documentation on application startup""" try: update_gradio_system_prompts() if should_update_gradio_docs(): print("πŸš€ Gradio documentation system initialized (fetched fresh content)") else: print("πŸš€ Gradio documentation system initialized (using cached content)") except Exception as e: print(f"Warning: Failed to initialize Gradio documentation: {e}") # Configuration HTML_SYSTEM_PROMPT = """ONLY USE HTML, CSS AND JAVASCRIPT. If you want to use ICON make sure to import the library first. Try to create the best UI possible by using only HTML, CSS and JAVASCRIPT. MAKE IT RESPONSIVE USING MODERN CSS. Use as much as you can modern CSS for the styling, if you can't do something with modern CSS, then use custom CSS. Also, try to elaborate as much as you can, to create something unique. ALWAYS GIVE THE RESPONSE INTO A SINGLE HTML FILE For website redesign tasks: - Use the provided original HTML code as the starting point for redesign - Preserve all original content, structure, and functionality - Keep the same semantic HTML structure but enhance the styling - Reuse all original images and their URLs from the HTML code - Create a modern, responsive design with improved typography and spacing - Use modern CSS frameworks and design patterns - Ensure accessibility and mobile responsiveness - Maintain the same navigation and user flow - Enhance the visual design while keeping the original layout structure If an image is provided, analyze it and use the visual information to better understand the user's requirements. Always respond with code that can be executed or rendered directly. Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text. Do NOT add the language name at the top of the code output.""" def validate_video_html(video_html: str) -> bool: """Validate that the video HTML is well-formed and safe to insert.""" try: # Basic checks for video HTML structure if not video_html or not video_html.strip(): return False # Check for required video elements if '' not in video_html: return False # Check for proper source tag if '') + 8 if video_start == -1 or video_end == 7: # 7 means not found return False return True except Exception: return False def llm_place_media(html_content: str, media_html_tag: str, media_kind: str = "image") -> str: """Ask a lightweight model to produce search/replace blocks that insert media_html_tag in the best spot. The model must return ONLY our block format using SEARCH_START/DIVIDER/REPLACE_END. """ try: client = get_inference_client("Qwen/Qwen3-Coder-480B-A35B-Instruct", "auto") system_prompt = ( "You are a code editor. Insert the provided media tag into the given HTML in the most semantically appropriate place.\n" "For video elements: prefer replacing placeholder images or inserting in hero sections with proper container divs.\n" "For image elements: prefer replacing placeholder images or inserting near related content.\n" "CRITICAL: Ensure proper HTML structure - videos should be wrapped in appropriate containers.\n" "Return ONLY search/replace blocks using the exact markers: <<<<<<< SEARCH, =======, >>>>>>> REPLACE.\n" "Do NOT include any commentary. Ensure the SEARCH block matches exact lines from the input.\n" "When inserting videos, ensure they are properly contained within semantic HTML elements.\n" ) # Truncate very long media tags for LLM prompt only to prevent token limits truncated_media_tag_for_prompt = media_html_tag if len(media_html_tag) > 2000: # For very long data URIs, show structure but truncate the data for LLM prompt if 'data:video/mp4;base64,' in media_html_tag: start_idx = media_html_tag.find('data:video/mp4;base64,') end_idx = media_html_tag.find('"', start_idx) if start_idx != -1 and end_idx != -1: truncated_media_tag_for_prompt = ( media_html_tag[:start_idx] + 'data:video/mp4;base64,[TRUNCATED_BASE64_DATA]' + media_html_tag[end_idx:] ) user_payload = ( "HTML Document:\n" + html_content + "\n\n" + f"Media ({media_kind}):\n" + truncated_media_tag_for_prompt + "\n\n" + "Produce search/replace blocks now." ) messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_payload}, ] completion = client.chat.completions.create( model="Qwen/Qwen3-Coder-480B-A35B-Instruct", messages=messages, max_tokens=2000, temperature=0.2, ) text = (completion.choices[0].message.content or "") if completion and completion.choices else "" # Replace any truncated placeholders with the original full media HTML if '[TRUNCATED_BASE64_DATA]' in text and 'data:video/mp4;base64,[TRUNCATED_BASE64_DATA]' in truncated_media_tag_for_prompt: # Extract the original base64 data from the full media tag original_start = media_html_tag.find('data:video/mp4;base64,') original_end = media_html_tag.find('"', original_start) if original_start != -1 and original_end != -1: original_data_uri = media_html_tag[original_start:original_end] text = text.replace('data:video/mp4;base64,[TRUNCATED_BASE64_DATA]', original_data_uri) return text.strip() except Exception as e: print(f"[LLMPlaceMedia] Fallback due to error: {e}") return "" # Stricter prompt for GLM-4.5V to ensure a complete, runnable HTML document with no escaped characters GLM45V_HTML_SYSTEM_PROMPT = """You are an expert front-end developer. Output a COMPLETE, STANDALONE HTML document that renders directly in a browser. Hard constraints: - DO NOT use React, ReactDOM, JSX, Babel, Vue, Angular, Svelte, or any SPA framework. - Use ONLY plain HTML, CSS, and vanilla JavaScript. - Allowed external resources: Tailwind CSS CDN, Font Awesome CDN, Google Fonts. - Do NOT escape characters (no \\n, \\t, or escaped quotes). Output raw HTML/JS/CSS. Structural requirements: - Include , , , and with proper nesting - Include required tags for any CSS you reference (e.g., Tailwind, Font Awesome, Google Fonts) - Keep everything in ONE file; inline CSS/JS as needed Return ONLY the code inside a single ```html ... ``` code block. No additional text before or after. """ # --------------------------------------------------------------------------- # Video temp-file management (per-session tracking and cleanup) # --------------------------------------------------------------------------- VIDEO_TEMP_DIR = os.path.join(tempfile.gettempdir(), "anycoder_videos") VIDEO_FILE_TTL_SECONDS = 6 * 60 * 60 # 6 hours _SESSION_VIDEO_FILES: Dict[str, List[str]] = {} _VIDEO_FILES_LOCK = threading.Lock() def _ensure_video_dir_exists() -> None: try: os.makedirs(VIDEO_TEMP_DIR, exist_ok=True) except Exception: pass def _register_video_for_session(session_id: Optional[str], file_path: str) -> None: if not session_id or not file_path: return with _VIDEO_FILES_LOCK: if session_id not in _SESSION_VIDEO_FILES: _SESSION_VIDEO_FILES[session_id] = [] _SESSION_VIDEO_FILES[session_id].append(file_path) def cleanup_session_videos(session_id: Optional[str]) -> None: if not session_id: return with _VIDEO_FILES_LOCK: file_list = _SESSION_VIDEO_FILES.pop(session_id, []) for path in file_list: try: if path and os.path.exists(path): os.unlink(path) except Exception: # Best-effort cleanup pass def reap_old_videos(ttl_seconds: int = VIDEO_FILE_TTL_SECONDS) -> None: """Delete old video files in the temp directory based on modification time.""" try: _ensure_video_dir_exists() now_ts = time.time() for name in os.listdir(VIDEO_TEMP_DIR): path = os.path.join(VIDEO_TEMP_DIR, name) try: if not os.path.isfile(path): continue mtime = os.path.getmtime(path) if now_ts - mtime > ttl_seconds: os.unlink(path) except Exception: pass except Exception: # Temp dir might not exist or be accessible; ignore pass # --------------------------------------------------------------------------- # Audio temp-file management (per-session tracking and cleanup) # --------------------------------------------------------------------------- AUDIO_TEMP_DIR = os.path.join(tempfile.gettempdir(), "anycoder_audio") AUDIO_FILE_TTL_SECONDS = 6 * 60 * 60 # 6 hours _SESSION_AUDIO_FILES: Dict[str, List[str]] = {} _AUDIO_FILES_LOCK = threading.Lock() def _ensure_audio_dir_exists() -> None: try: os.makedirs(AUDIO_TEMP_DIR, exist_ok=True) except Exception: pass def _register_audio_for_session(session_id: Optional[str], file_path: str) -> None: if not session_id or not file_path: return with _AUDIO_FILES_LOCK: if session_id not in _SESSION_AUDIO_FILES: _SESSION_AUDIO_FILES[session_id] = [] _SESSION_AUDIO_FILES[session_id].append(file_path) def cleanup_session_audio(session_id: Optional[str]) -> None: if not session_id: return with _AUDIO_FILES_LOCK: file_list = _SESSION_AUDIO_FILES.pop(session_id, []) for path in file_list: try: if path and os.path.exists(path): os.unlink(path) except Exception: pass def reap_old_audio(ttl_seconds: int = AUDIO_FILE_TTL_SECONDS) -> None: try: _ensure_audio_dir_exists() now_ts = time.time() for name in os.listdir(AUDIO_TEMP_DIR): path = os.path.join(AUDIO_TEMP_DIR, name) try: if not os.path.isfile(path): continue mtime = os.path.getmtime(path) if now_ts - mtime > ttl_seconds: os.unlink(path) except Exception: pass except Exception: pass TRANSFORMERS_JS_SYSTEM_PROMPT = """You are an expert web developer creating a transformers.js application. You will generate THREE separate files: index.html, index.js, and style.css. IMPORTANT: You MUST output ALL THREE files in the following format: ```html ``` ```javascript // index.js content here ``` ```css /* style.css content here */ ``` Requirements: 1. Create a modern, responsive web application using transformers.js 2. Use the transformers.js library for AI/ML functionality 3. Create a clean, professional UI with good user experience 4. Make the application fully responsive for mobile devices 5. Use modern CSS practices and JavaScript ES6+ features 6. Include proper error handling and loading states 7. Follow accessibility best practices Library import (required): Add the following snippet to index.html to import transformers.js: Device Options: By default, transformers.js runs on CPU (via WASM). For better performance, you can run models on GPU using WebGPU: - CPU (default): const pipe = await pipeline('task', 'model-name'); - GPU (WebGPU): const pipe = await pipeline('task', 'model-name', { device: 'webgpu' }); Consider providing users with a toggle option to choose between CPU and GPU execution based on their browser's WebGPU support. The index.html should contain the basic HTML structure and link to the CSS and JS files. The index.js should contain all the JavaScript logic including transformers.js integration. The style.css should contain all the styling for the application. Always output only the three code blocks as shown above, and do not include any explanations or extra text.""" SVELTE_SYSTEM_PROMPT = """You are an expert Svelte developer creating a modern Svelte application. File selection policy (dynamic, model-decided): - Generate ONLY the files actually needed for the user's request. - MUST include src/App.svelte (entry component) and src/main.ts (entry point). - Usually include src/app.css for global styles. - Add additional files when needed, e.g. src/lib/*.svelte, src/components/*.svelte, src/stores/*.ts, static/* assets, etc. - Other base template files (package.json, vite.config.ts, tsconfig, svelte.config.js, src/vite-env.d.ts) are provided by the template and should NOT be generated unless explicitly requested by the user. CRITICAL: Always generate src/main.ts with correct Svelte 5 syntax: ```typescript import './app.css' import App from './App.svelte' const app = new App({ target: document.getElementById('app')!, }) export default app ``` Do NOT use the old mount syntax: `import { mount } from 'svelte'` - this will cause build errors. Output format (CRITICAL): - Return ONLY a series of file sections, each starting with a filename line: === src/App.svelte === ...file content... === src/app.css === ...file content... (repeat for all files you decide to create) - Do NOT wrap files in Markdown code fences. Dependency policy: - If you import any third-party npm packages (e.g., "@gradio/dataframe"), include a package.json at the project root with a "dependencies" section listing them. Keep scripts and devDependencies compatible with the default Svelte + Vite template. Requirements: 1. Create a modern, responsive Svelte application based on the user's specific request 2. Prefer TypeScript where applicable for better type safety 3. Create a clean, professional UI with good user experience 4. Make the application fully responsive for mobile devices 5. Use modern CSS practices and Svelte best practices 6. Include proper error handling and loading states 7. Follow accessibility best practices 8. Use Svelte's reactive features effectively 9. Include proper component structure and organization (only what's needed) """ SVELTE_SYSTEM_PROMPT_WITH_SEARCH = """You are an expert Svelte developer. You have access to real-time web search. File selection policy (dynamic, model-decided): - Generate ONLY the files actually needed for the user's request. - MUST include src/App.svelte (entry component) and src/main.ts (entry point). - Usually include src/app.css for global styles. - Add additional files when needed, e.g. src/lib/*.svelte, src/components/*.svelte, src/stores/*.ts, static/* assets, etc. - Other base template files (package.json, vite.config.ts, tsconfig, svelte.config.js, src/vite-env.d.ts) are provided by the template and should NOT be generated unless explicitly requested by the user. CRITICAL: Always generate src/main.ts with correct Svelte 5 syntax: ```typescript import './app.css' import App from './App.svelte' const app = new App({ target: document.getElementById('app')!, }) export default app ``` Do NOT use the old mount syntax: `import { mount } from 'svelte'` - this will cause build errors. Output format (CRITICAL): - Return ONLY a series of file sections, each starting with a filename line: === src/App.svelte === ...file content... === src/app.css === ...file content... (repeat for all files you decide to create) - Do NOT wrap files in Markdown code fences. Dependency policy: - If you import any third-party npm packages, include a package.json at the project root with a "dependencies" section listing them. Keep scripts and devDependencies compatible with the default Svelte + Vite template. Requirements: 1. Create a modern, responsive Svelte application 2. Prefer TypeScript where applicable 3. Clean, professional UI and UX 4. Mobile-first responsiveness 5. Svelte best practices and modern CSS 6. Error handling and loading states 7. Accessibility best practices 8. Use search to apply current best practices 9. Keep component structure organized and minimal """ TRANSFORMERS_JS_SYSTEM_PROMPT_WITH_SEARCH = """You are an expert web developer creating a transformers.js application. You have access to real-time web search. When needed, use web search to find the latest information, best practices, or specific technologies for transformers.js. You will generate THREE separate files: index.html, index.js, and style.css. IMPORTANT: You MUST output ALL THREE files in the following format: ```html ``` ```javascript // index.js content here ``` ```css /* style.css content here */ ``` Requirements: 1. Create a modern, responsive web application using transformers.js 2. Use the transformers.js library for AI/ML functionality 3. Use web search to find current best practices and latest transformers.js features 4. Create a clean, professional UI with good user experience 5. Make the application fully responsive for mobile devices 6. Use modern CSS practices and JavaScript ES6+ features 7. Include proper error handling and loading states 8. Follow accessibility best practices Library import (required): Add the following snippet to index.html to import transformers.js: Device Options: By default, transformers.js runs on CPU (via WASM). For better performance, you can run models on GPU using WebGPU: - CPU (default): const pipe = await pipeline('task', 'model-name'); - GPU (WebGPU): const pipe = await pipeline('task', 'model-name', { device: 'webgpu' }); Consider providing users with a toggle option to choose between CPU and GPU execution based on their browser's WebGPU support. The index.html should contain the basic HTML structure and link to the CSS and JS files. The index.js should contain all the JavaScript logic including transformers.js integration. The style.css should contain all the styling for the application. Always output only the three code blocks as shown above, and do not include any explanations or extra text.""" # Gradio system prompts will be dynamically populated by update_gradio_system_prompts() GRADIO_SYSTEM_PROMPT = "" GRADIO_SYSTEM_PROMPT_WITH_SEARCH = "" # GRADIO_SYSTEM_PROMPT_WITH_SEARCH will be dynamically populated by update_gradio_system_prompts() # All Gradio API documentation is now dynamically loaded from https://www.gradio.app/llms.txt GENERIC_SYSTEM_PROMPT = """You are an expert {language} developer. Write clean, idiomatic, and runnable {language} code for the user's request. If possible, include comments and best practices. Output ONLY the code inside a ``` code block, and do not include any explanations or extra text. If the user provides a file or other context, use it as a reference. If the code is for a script or app, make it as self-contained as possible. Do NOT add the language name at the top of the code output.""" # System prompt with search capability HTML_SYSTEM_PROMPT_WITH_SEARCH = """You are an expert front-end developer. You have access to real-time web search. Output a COMPLETE, STANDALONE HTML document that renders directly in a browser. Requirements: - Include , , , and with proper nesting - Include all required and {REPLACE_END} ``` Example Fixing Dependencies (requirements.txt): ``` Adding missing dependency to fix ImportError... === requirements.txt === {SEARCH_START} gradio streamlit {DIVIDER} gradio streamlit mistral-common {REPLACE_END} ``` Example Deleting Code: ``` Removing the paragraph... {SEARCH_START}

This paragraph will be deleted.

{DIVIDER} {REPLACE_END} ```""" # Follow-up system prompt for modifying existing transformers.js applications TransformersJSFollowUpSystemPrompt = f"""You are an expert web developer modifying an existing transformers.js application. The user wants to apply changes based on their request. You MUST output ONLY the changes required using the following SEARCH/REPLACE block format. Do NOT output the entire file. Explain the changes briefly *before* the blocks if necessary, but the code changes THEMSELVES MUST be within the blocks. IMPORTANT: When the user reports an ERROR MESSAGE, analyze it carefully to determine which file needs fixing: - JavaScript errors/module loading issues β†’ Fix index.js - HTML rendering/DOM issues β†’ Fix index.html - Styling/visual issues β†’ Fix style.css - CDN/library loading errors β†’ Fix script tags in index.html The transformers.js application consists of three files: index.html, index.js, and style.css. When making changes, specify which file you're modifying by starting your search/replace blocks with the file name. Format Rules: 1. Start with {SEARCH_START} 2. Provide the exact lines from the current code that need to be replaced. 3. Use {DIVIDER} to separate the search block from the replacement. 4. Provide the new lines that should replace the original lines. 5. End with {REPLACE_END} 6. You can use multiple SEARCH/REPLACE blocks if changes are needed in different parts of the file. 7. To insert code, use an empty SEARCH block (only {SEARCH_START} and {DIVIDER} on their lines) if inserting at the very beginning, otherwise provide the line *before* the insertion point in the SEARCH block and include that line plus the new lines in the REPLACE block. 8. To delete code, provide the lines to delete in the SEARCH block and leave the REPLACE block empty (only {DIVIDER} and {REPLACE_END} on their lines). 9. IMPORTANT: The SEARCH block must *exactly* match the current code, including indentation and whitespace. Example Modifying HTML: ``` Changing the title in index.html... === index.html === {SEARCH_START} Old Title {DIVIDER} New Title {REPLACE_END} ``` Example Modifying JavaScript: ``` Adding a new function to index.js... === index.js === {SEARCH_START} // Existing code {DIVIDER} // Existing code function newFunction() {{ console.log("New function added"); }} {REPLACE_END} ``` Example Modifying CSS: ``` Changing background color in style.css... === style.css === {SEARCH_START} body {{ background-color: white; }} {DIVIDER} body {{ background-color: #f0f0f0; }} {REPLACE_END} ``` Example Fixing Library Loading Error: ``` Fixing transformers.js CDN loading error... === index.html === {SEARCH_START} {DIVIDER} {REPLACE_END} ```""" # Available models AVAILABLE_MODELS = [ { "name": "Moonshot Kimi-K2", "id": "moonshotai/Kimi-K2-Instruct", "description": "Moonshot AI Kimi-K2-Instruct model for code generation and general tasks" }, { "name": "Kimi K2 Turbo (Preview)", "id": "kimi-k2-turbo-preview", "description": "Moonshot AI Kimi K2 Turbo via OpenAI-compatible API" }, { "name": "Carrot", "id": "stealth-model-1", "description": "High-performance AI model for code generation and complex reasoning tasks" }, { "name": "DeepSeek V3", "id": "deepseek-ai/DeepSeek-V3-0324", "description": "DeepSeek V3 model for code generation" }, { "name": "DeepSeek V3.1", "id": "deepseek-ai/DeepSeek-V3.1", "description": "DeepSeek V3.1 model for code generation and general tasks" }, { "name": "DeepSeek R1", "id": "deepseek-ai/DeepSeek-R1-0528", "description": "DeepSeek R1 model for code generation" }, { "name": "ERNIE-4.5-VL", "id": "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT", "description": "ERNIE-4.5-VL model for multimodal code generation with image support" }, { "name": "MiniMax M1", "id": "MiniMaxAI/MiniMax-M1-80k", "description": "MiniMax M1 model for code generation and general tasks" }, { "name": "Qwen3-235B-A22B", "id": "Qwen/Qwen3-235B-A22B", "description": "Qwen3-235B-A22B model for code generation and general tasks" }, { "name": "SmolLM3-3B", "id": "HuggingFaceTB/SmolLM3-3B", "description": "SmolLM3-3B model for code generation and general tasks" }, { "name": "GLM-4.5", "id": "zai-org/GLM-4.5", "description": "GLM-4.5 model with thinking capabilities for advanced code generation" }, { "name": "GLM-4.5V", "id": "zai-org/GLM-4.5V", "description": "GLM-4.5V multimodal model with image understanding for code generation" }, { "name": "GLM-4.1V-9B-Thinking", "id": "THUDM/GLM-4.1V-9B-Thinking", "description": "GLM-4.1V-9B-Thinking model for multimodal code generation with image support" }, { "name": "Qwen3-235B-A22B-Instruct-2507", "id": "Qwen/Qwen3-235B-A22B-Instruct-2507", "description": "Qwen3-235B-A22B-Instruct-2507 model for code generation and general tasks" }, { "name": "Qwen3-Coder-480B-A35B-Instruct", "id": "Qwen/Qwen3-Coder-480B-A35B-Instruct", "description": "Qwen3-Coder-480B-A35B-Instruct model for advanced code generation and programming tasks" }, { "name": "Qwen3-32B", "id": "Qwen/Qwen3-32B", "description": "Qwen3-32B model for code generation and general tasks" }, { "name": "Qwen3-4B-Instruct-2507", "id": "Qwen/Qwen3-4B-Instruct-2507", "description": "Qwen3-4B-Instruct-2507 model for code generation and general tasks" }, { "name": "Qwen3-4B-Thinking-2507", "id": "Qwen/Qwen3-4B-Thinking-2507", "description": "Qwen3-4B-Thinking-2507 model with advanced reasoning capabilities for code generation and general tasks" }, { "name": "Qwen3-235B-A22B-Thinking", "id": "Qwen/Qwen3-235B-A22B-Thinking-2507", "description": "Qwen3-235B-A22B-Thinking model with advanced reasoning capabilities" }, { "name": "Qwen3-30B-A3B-Instruct-2507", "id": "qwen3-30b-a3b-instruct-2507", "description": "Qwen3-30B-A3B-Instruct model via Alibaba Cloud DashScope API" }, { "name": "Qwen3-30B-A3B-Thinking-2507", "id": "qwen3-30b-a3b-thinking-2507", "description": "Qwen3-30B-A3B-Thinking model with advanced reasoning via Alibaba Cloud DashScope API" }, { "name": "Qwen3-Coder-30B-A3B-Instruct", "id": "qwen3-coder-30b-a3b-instruct", "description": "Qwen3-Coder-30B-A3B-Instruct model for advanced code generation via Alibaba Cloud DashScope API" }, { "name": "Cohere Command-A Reasoning 08-2025", "id": "CohereLabs/command-a-reasoning-08-2025", "description": "Cohere Labs Command-A Reasoning (Aug 2025) via Hugging Face InferenceClient" }, { "name": "StepFun Step-3", "id": "step-3", "description": "StepFun Step-3 model - AI chat assistant by ι˜Άθ·ƒζ˜ŸθΎ° with multilingual capabilities" }, { "name": "Codestral 2508", "id": "codestral-2508", "description": "Mistral Codestral model - specialized for code generation and programming tasks" }, { "name": "Mistral Medium 2508", "id": "mistral-medium-2508", "description": "Mistral Medium 2508 model via Mistral API for general tasks and coding" }, { "name": "Gemini 2.5 Flash", "id": "gemini-2.5-flash", "description": "Google Gemini 2.5 Flash via OpenAI-compatible API" }, { "name": "Gemini 2.5 Pro", "id": "gemini-2.5-pro", "description": "Google Gemini 2.5 Pro via OpenAI-compatible API" }, { "name": "GPT-OSS-120B", "id": "openai/gpt-oss-120b", "description": "OpenAI GPT-OSS-120B model for advanced code generation and general tasks" }, { "name": "GPT-OSS-20B", "id": "openai/gpt-oss-20b", "description": "OpenAI GPT-OSS-20B model for code generation and general tasks" }, { "name": "GPT-5", "id": "gpt-5", "description": "OpenAI GPT-5 model for advanced code generation and general tasks" }, { "name": "Grok-4", "id": "grok-4", "description": "Grok-4 model via Poe (OpenAI-compatible) for advanced tasks" }, { "name": "Grok-Code-Fast-1", "id": "Grok-Code-Fast-1", "description": "Grok-Code-Fast-1 model via Poe (OpenAI-compatible) for fast code generation" }, { "name": "Claude-Opus-4.1", "id": "claude-opus-4.1", "description": "Anthropic Claude Opus 4.1 via Poe (OpenAI-compatible)" }, { "name": "Qwen3 Max Preview", "id": "qwen3-max-preview", "description": "Qwen3 Max Preview model via DashScope International API" }, { "name": "Sonoma Dusk Alpha", "id": "openrouter/sonoma-dusk-alpha", "description": "OpenRouter Sonoma Dusk Alpha model with vision capabilities" }, { "name": "Sonoma Sky Alpha", "id": "openrouter/sonoma-sky-alpha", "description": "OpenRouter Sonoma Sky Alpha model with vision capabilities" } ] # Default model selection DEFAULT_MODEL_NAME = "Sonoma Sky Alpha" DEFAULT_MODEL = None for _m in AVAILABLE_MODELS: if _m.get("name") == DEFAULT_MODEL_NAME: DEFAULT_MODEL = _m break if DEFAULT_MODEL is None and AVAILABLE_MODELS: DEFAULT_MODEL = AVAILABLE_MODELS[0] DEMO_LIST = [ { "title": "Todo App", "description": "Create a simple todo application with add, delete, and mark as complete functionality" }, { "title": "Calculator", "description": "Build a basic calculator with addition, subtraction, multiplication, and division" }, { "title": "Chat Interface", "description": "Build a chat interface with message history and user input" }, { "title": "E-commerce Product Card", "description": "Create a product card component for an e-commerce website" }, { "title": "Login Form", "description": "Build a responsive login form with validation" }, { "title": "Dashboard Layout", "description": "Create a dashboard layout with sidebar navigation and main content area" }, { "title": "Data Table", "description": "Build a data table with sorting and filtering capabilities" }, { "title": "Image Gallery", "description": "Create an image gallery with lightbox functionality and responsive grid layout" }, { "title": "UI from Image", "description": "Upload an image of a UI design and I'll generate the HTML/CSS code for it" }, { "title": "Extract Text from Image", "description": "Upload an image containing text and I'll extract and process the text content" }, { "title": "Website Redesign", "description": "Enter a website URL to extract its content and redesign it with a modern, responsive layout" }, { "title": "Modify HTML", "description": "After generating HTML, ask me to modify it with specific changes using search/replace format" }, { "title": "Search/Replace Example", "description": "Generate HTML first, then ask: 'Change the title to My New Title' or 'Add a blue background to the body'" }, { "title": "Transformers.js App", "description": "Create a transformers.js application with AI/ML functionality using the transformers.js library" }, { "title": "Svelte App", "description": "Create a modern Svelte application with TypeScript, Vite, and responsive design" } ] # HF Inference Client HF_TOKEN = os.getenv('HF_TOKEN') if not HF_TOKEN: raise RuntimeError("HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token.") def get_inference_client(model_id, provider="auto"): """Return an InferenceClient with provider based on model_id and user selection.""" if model_id == "qwen3-30b-a3b-instruct-2507": # Use DashScope OpenAI client return OpenAI( api_key=os.getenv("DASHSCOPE_API_KEY"), base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", ) elif model_id == "qwen3-30b-a3b-thinking-2507": # Use DashScope OpenAI client for Thinking model return OpenAI( api_key=os.getenv("DASHSCOPE_API_KEY"), base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", ) elif model_id == "qwen3-coder-30b-a3b-instruct": # Use DashScope OpenAI client for Coder model return OpenAI( api_key=os.getenv("DASHSCOPE_API_KEY"), base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", ) elif model_id == "gpt-5": # Use Poe (OpenAI-compatible) client for GPT-5 model return OpenAI( api_key=os.getenv("POE_API_KEY"), base_url="https://api.poe.com/v1" ) elif model_id == "grok-4": # Use Poe (OpenAI-compatible) client for Grok-4 model return OpenAI( api_key=os.getenv("POE_API_KEY"), base_url="https://api.poe.com/v1" ) elif model_id == "Grok-Code-Fast-1": # Use Poe (OpenAI-compatible) client for Grok-Code-Fast-1 model return OpenAI( api_key=os.getenv("POE_API_KEY"), base_url="https://api.poe.com/v1" ) elif model_id == "claude-opus-4.1": # Use Poe (OpenAI-compatible) client for Claude-Opus-4.1 return OpenAI( api_key=os.getenv("POE_API_KEY"), base_url="https://api.poe.com/v1" ) elif model_id == "qwen3-max-preview": # Use DashScope International OpenAI client for Qwen3 Max Preview return OpenAI( api_key=os.getenv("DASHSCOPE_API_KEY"), base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", ) elif model_id == "openrouter/sonoma-dusk-alpha": # Use OpenRouter client for Sonoma Dusk Alpha model return OpenAI( api_key=os.getenv("OPENROUTER_API_KEY"), base_url="https://openrouter.ai/api/v1", ) elif model_id == "openrouter/sonoma-sky-alpha": # Use OpenRouter client for Sonoma Sky Alpha model return OpenAI( api_key=os.getenv("OPENROUTER_API_KEY"), base_url="https://openrouter.ai/api/v1", ) elif model_id == "step-3": # Use StepFun API client for Step-3 model return OpenAI( api_key=os.getenv("STEP_API_KEY"), base_url="https://api.stepfun.com/v1" ) elif model_id == "codestral-2508" or model_id == "mistral-medium-2508": # Use Mistral client for Mistral models return Mistral(api_key=os.getenv("MISTRAL_API_KEY")) elif model_id == "gemini-2.5-flash": # Use Google Gemini (OpenAI-compatible) client return OpenAI( api_key=os.getenv("GEMINI_API_KEY"), base_url="https://generativelanguage.googleapis.com/v1beta/openai/", ) elif model_id == "gemini-2.5-pro": # Use Google Gemini Pro (OpenAI-compatible) client return OpenAI( api_key=os.getenv("GEMINI_API_KEY"), base_url="https://generativelanguage.googleapis.com/v1beta/openai/", ) elif model_id == "kimi-k2-turbo-preview": # Use Moonshot AI (OpenAI-compatible) client for Kimi K2 Turbo (Preview) return OpenAI( api_key=os.getenv("MOONSHOT_API_KEY"), base_url="https://api.moonshot.ai/v1", ) elif model_id == "stealth-model-1": # Use stealth model with generic configuration api_key = os.getenv("STEALTH_MODEL_1_API_KEY") if not api_key: raise ValueError("STEALTH_MODEL_1_API_KEY environment variable is required for Carrot model") base_url = os.getenv("STEALTH_MODEL_1_BASE_URL") if not base_url: raise ValueError("STEALTH_MODEL_1_BASE_URL environment variable is required for Carrot model") return OpenAI( api_key=api_key, base_url=base_url, ) elif model_id == "openai/gpt-oss-120b": provider = "groq" elif model_id == "openai/gpt-oss-20b": provider = "groq" elif model_id == "moonshotai/Kimi-K2-Instruct": provider = "groq" elif model_id == "Qwen/Qwen3-235B-A22B": provider = "cerebras" elif model_id == "Qwen/Qwen3-235B-A22B-Instruct-2507": provider = "cerebras" elif model_id == "Qwen/Qwen3-32B": provider = "cerebras" elif model_id == "Qwen/Qwen3-235B-A22B-Thinking-2507": provider = "cerebras" elif model_id == "Qwen/Qwen3-Coder-480B-A35B-Instruct": provider = "cerebras" elif model_id == "deepseek-ai/DeepSeek-V3.1": provider = "novita" elif model_id == "zai-org/GLM-4.5": provider = "fireworks-ai" return InferenceClient( provider=provider, api_key=HF_TOKEN, bill_to="huggingface" ) # Helper function to get real model ID for stealth models def get_real_model_id(model_id: str) -> str: """Get the real model ID, checking environment variables for stealth models""" if model_id == "stealth-model-1": # Get the real model ID from environment variable real_model_id = os.getenv("STEALTH_MODEL_1_ID") if not real_model_id: raise ValueError("STEALTH_MODEL_1_ID environment variable is required for Carrot model") return real_model_id return model_id # Type definitions History = List[Tuple[str, str]] Messages = List[Dict[str, str]] # Tavily Search Client TAVILY_API_KEY = os.getenv('TAVILY_API_KEY') tavily_client = None if TAVILY_API_KEY: try: tavily_client = TavilyClient(api_key=TAVILY_API_KEY) except Exception as e: print(f"Failed to initialize Tavily client: {e}") tavily_client = None def history_to_messages(history: History, system: str) -> Messages: messages = [{'role': 'system', 'content': system}] for h in history: # Handle multimodal content in history user_content = h[0] if isinstance(user_content, list): # Extract text from multimodal content text_content = "" for item in user_content: if isinstance(item, dict) and item.get("type") == "text": text_content += item.get("text", "") user_content = text_content if text_content else str(user_content) messages.append({'role': 'user', 'content': user_content}) messages.append({'role': 'assistant', 'content': h[1]}) return messages def messages_to_history(messages: Messages) -> Tuple[str, History]: assert messages[0]['role'] == 'system' history = [] for q, r in zip(messages[1::2], messages[2::2]): # Extract text content from multimodal messages for history user_content = q['content'] if isinstance(user_content, list): text_content = "" for item in user_content: if isinstance(item, dict) and item.get("type") == "text": text_content += item.get("text", "") user_content = text_content if text_content else str(user_content) history.append([user_content, r['content']]) return history def history_to_chatbot_messages(history: History) -> List[Dict[str, str]]: """Convert history tuples to chatbot message format""" messages = [] for user_msg, assistant_msg in history: # Handle multimodal content if isinstance(user_msg, list): text_content = "" for item in user_msg: if isinstance(item, dict) and item.get("type") == "text": text_content += item.get("text", "") user_msg = text_content if text_content else str(user_msg) messages.append({"role": "user", "content": user_msg}) messages.append({"role": "assistant", "content": assistant_msg}) return messages def remove_code_block(text): # Try to match code blocks with language markers patterns = [ r'```(?:html|HTML)\n([\s\S]+?)\n```', # Match ```html or ```HTML r'```\n([\s\S]+?)\n```', # Match code blocks without language markers r'```([\s\S]+?)```' # Match code blocks without line breaks ] for pattern in patterns: match = re.search(pattern, text, re.DOTALL) if match: extracted = match.group(1).strip() # Remove a leading language marker line (e.g., 'python') if present if extracted.split('\n', 1)[0].strip().lower() in ['python', 'html', 'css', 'javascript', 'json', 'c', 'cpp', 'markdown', 'latex', 'jinja2', 'typescript', 'yaml', 'dockerfile', 'shell', 'r', 'sql', 'sql-mssql', 'sql-mysql', 'sql-mariadb', 'sql-sqlite', 'sql-cassandra', 'sql-plSQL', 'sql-hive', 'sql-pgsql', 'sql-gql', 'sql-gpsql', 'sql-sparksql', 'sql-esper']: return extracted.split('\n', 1)[1] if '\n' in extracted else '' # If HTML markup starts later in the block (e.g., Poe injected preface), trim to first HTML root html_root_idx = None for tag in [' 0: return extracted[html_root_idx:].strip() return extracted # If no code block is found, check if the entire text is HTML stripped = text.strip() if stripped.startswith('') or stripped.startswith(' 0: return stripped[idx:].strip() return stripped # Special handling for python: remove python marker if text.strip().startswith('```python'): return text.strip()[9:-3].strip() # Remove a leading language marker line if present (fallback) lines = text.strip().split('\n', 1) if lines[0].strip().lower() in ['python', 'html', 'css', 'javascript', 'json', 'c', 'cpp', 'markdown', 'latex', 'jinja2', 'typescript', 'yaml', 'dockerfile', 'shell', 'r', 'sql', 'sql-mssql', 'sql-mysql', 'sql-mariadb', 'sql-sqlite', 'sql-cassandra', 'sql-plSQL', 'sql-hive', 'sql-pgsql', 'sql-gql', 'sql-gpsql', 'sql-sparksql', 'sql-esper']: return lines[1] if len(lines) > 1 else '' return text.strip() ## React CDN compatibility fixer removed per user preference def strip_placeholder_thinking(text: str) -> str: """Remove placeholder 'Thinking...' status lines from streamed text.""" if not text: return text # Matches lines like: "Thinking..." or "Thinking... (12s elapsed)" return re.sub(r"(?mi)^[\t ]*Thinking\.\.\.(?:\s*\(\d+s elapsed\))?[\t ]*$\n?", "", text) def is_placeholder_thinking_only(text: str) -> bool: """Return True if text contains only 'Thinking...' placeholder lines (with optional elapsed).""" if not text: return False stripped = text.strip() if not stripped: return False return re.fullmatch(r"(?s)(?:\s*Thinking\.\.\.(?:\s*\(\d+s elapsed\))?\s*)+", stripped) is not None def extract_last_thinking_line(text: str) -> str: """Extract the last 'Thinking...' line to display as status.""" matches = list(re.finditer(r"Thinking\.\.\.(?:\s*\(\d+s elapsed\))?", text)) return matches[-1].group(0) if matches else "Thinking..." def parse_transformers_js_output(text): """Parse transformers.js output and extract the three files (index.html, index.js, style.css)""" files = { 'index.html': '', 'index.js': '', 'style.css': '' } # Multiple patterns to match the three code blocks with different variations html_patterns = [ r'```html\s*\n([\s\S]*?)(?:```|\Z)', r'```htm\s*\n([\s\S]*?)(?:```|\Z)', r'```\s*(?:index\.html|html)\s*\n([\s\S]*?)(?:```|\Z)' ] js_patterns = [ r'```javascript\s*\n([\s\S]*?)(?:```|\Z)', r'```js\s*\n([\s\S]*?)(?:```|\Z)', r'```\s*(?:index\.js|javascript|js)\s*\n([\s\S]*?)(?:```|\Z)' ] css_patterns = [ r'```css\s*\n([\s\S]*?)(?:```|\Z)', r'```\s*(?:style\.css|css)\s*\n([\s\S]*?)(?:```|\Z)' ] # Extract HTML content for pattern in html_patterns: html_match = re.search(pattern, text, re.IGNORECASE) if html_match: files['index.html'] = html_match.group(1).strip() break # Extract JavaScript content for pattern in js_patterns: js_match = re.search(pattern, text, re.IGNORECASE) if js_match: files['index.js'] = js_match.group(1).strip() break # Extract CSS content for pattern in css_patterns: css_match = re.search(pattern, text, re.IGNORECASE) if css_match: files['style.css'] = css_match.group(1).strip() break # Fallback: support === index.html === format if any file is missing if not (files['index.html'] and files['index.js'] and files['style.css']): # Use regex to extract sections html_fallback = re.search(r'===\s*index\.html\s*===\s*\n([\s\S]+?)(?=\n===|$)', text, re.IGNORECASE) js_fallback = re.search(r'===\s*index\.js\s*===\s*\n([\s\S]+?)(?=\n===|$)', text, re.IGNORECASE) css_fallback = re.search(r'===\s*style\.css\s*===\s*\n([\s\S]+?)(?=\n===|$)', text, re.IGNORECASE) if html_fallback: files['index.html'] = html_fallback.group(1).strip() if js_fallback: files['index.js'] = js_fallback.group(1).strip() if css_fallback: files['style.css'] = css_fallback.group(1).strip() # Additional fallback: extract from numbered sections or file headers if not (files['index.html'] and files['index.js'] and files['style.css']): # Try patterns like "1. index.html:" or "**index.html**" patterns = [ (r'(?:^\d+\.\s*|^##\s*|^\*\*\s*)index\.html(?:\s*:|\*\*:?)\s*\n([\s\S]+?)(?=\n(?:\d+\.|##|\*\*|===)|$)', 'index.html'), (r'(?:^\d+\.\s*|^##\s*|^\*\*\s*)index\.js(?:\s*:|\*\*:?)\s*\n([\s\S]+?)(?=\n(?:\d+\.|##|\*\*|===)|$)', 'index.js'), (r'(?:^\d+\.\s*|^##\s*|^\*\*\s*)style\.css(?:\s*:|\*\*:?)\s*\n([\s\S]+?)(?=\n(?:\d+\.|##|\*\*|===)|$)', 'style.css') ] for pattern, file_key in patterns: if not files[file_key]: match = re.search(pattern, text, re.IGNORECASE | re.MULTILINE) if match: # Clean up the content by removing any code block markers content = match.group(1).strip() content = re.sub(r'^```\w*\s*\n', '', content) content = re.sub(r'\n```\s*$', '', content) files[file_key] = content.strip() return files def format_transformers_js_output(files): """Format the three files into a single display string""" output = [] output.append("=== index.html ===") output.append(files['index.html']) output.append("\n=== index.js ===") output.append(files['index.js']) output.append("\n=== style.css ===") output.append(files['style.css']) return '\n'.join(output) def build_transformers_inline_html(files: dict) -> str: """Merge transformers.js three-file output into a single self-contained HTML document. - Inlines style.css into a " if css else "" if style_tag: if '' in doc.lower(): # Preserve original casing by finding closing head case-insensitively match = _re.search(r"", doc, flags=_re.IGNORECASE) if match: idx = match.start() doc = doc[:idx] + style_tag + doc[idx:] else: # No head; insert at top of body match = _re.search(r"]*>", doc, flags=_re.IGNORECASE) if match: idx = match.end() doc = doc[:idx] + "\n" + style_tag + doc[idx:] else: # Append at beginning doc = style_tag + doc # Inline JS: insert before script_tag = f"" if js else "" # Lightweight debug console overlay to surface runtime errors inside the iframe debug_overlay = ( "\n" "
\n" "" ) # Cleanup script to clear Cache Storage and IndexedDB on unload to free model weights cleanup_tag = ( "" ) if script_tag: match = _re.search(r"", doc, flags=_re.IGNORECASE) if match: idx = match.start() doc = doc[:idx] + debug_overlay + script_tag + cleanup_tag + doc[idx:] else: # Append at end doc = doc + debug_overlay + script_tag + cleanup_tag return doc def send_transformers_to_sandbox(files: dict) -> str: """Build a self-contained HTML document from transformers.js files and return an iframe preview.""" merged_html = build_transformers_inline_html(files) return send_to_sandbox(merged_html) def parse_multipage_html_output(text: str) -> Dict[str, str]: """Parse multi-page HTML output formatted as repeated "=== filename ===" sections. Returns a mapping of filename β†’ file content. Supports nested paths like assets/css/styles.css. """ if not text: return {} # First, strip any markdown fences cleaned = remove_code_block(text) files: Dict[str, str] = {} import re as _re pattern = _re.compile(r"^===\s*([^=\n]+?)\s*===\s*\n([\s\S]*?)(?=\n===\s*[^=\n]+?\s*===|\Z)", _re.MULTILINE) for m in pattern.finditer(cleaned): name = m.group(1).strip() content = m.group(2).strip() # Remove accidental trailing fences if present content = _re.sub(r"^```\w*\s*\n|\n```\s*$", "", content) files[name] = content return files def format_multipage_output(files: Dict[str, str]) -> str: """Format a dict of files back into === filename === sections. Ensures `index.html` appears first if present; others follow sorted by path. """ if not isinstance(files, dict) or not files: return "" ordered_paths = [] if 'index.html' in files: ordered_paths.append('index.html') for path in sorted(files.keys()): if path == 'index.html': continue ordered_paths.append(path) parts: list[str] = [] for path in ordered_paths: parts.append(f"=== {path} ===") # Avoid trailing extra newlines to keep blocks compact parts.append((files.get(path) or '').rstrip()) return "\n".join(parts) def validate_and_autofix_files(files: Dict[str, str]) -> Dict[str, str]: """Ensure minimal contract for multi-file sites; auto-fix missing pieces. Rules: - Ensure at least one HTML entrypoint (index.html). If none, synthesize a simple index.html linking discovered pages. - For each HTML file, ensure referenced local assets exist in files; if missing, add minimal stubs. - Normalize relative paths (strip leading '/'). """ if not isinstance(files, dict) or not files: return files or {} import re as _re normalized: Dict[str, str] = {} for k, v in files.items(): safe_key = k.strip().lstrip('/') normalized[safe_key] = v html_files = [p for p in normalized.keys() if p.lower().endswith('.html')] has_index = 'index.html' in normalized # If no index.html but some HTML pages exist, create a simple hub index linking to them if not has_index and html_files: links = '\n'.join([f"
  • {p}
  • " for p in html_files]) normalized['index.html'] = ( "\n\n\n\n" "\n" "Site Index\n\n\n

    Site

    \n
      \n" + links + "\n
    \n\n" ) # Collect references from HTML files asset_refs: set[str] = set() link_href = _re.compile(r"]+href=\"([^\"]+)\"") script_src = _re.compile(r"]+src=\"([^\"]+)\"") img_src = _re.compile(r"]+src=\"([^\"]+)\"") a_href = _re.compile(r"]+href=\"([^\"]+)\"") for path, content in list(normalized.items()): if not path.lower().endswith('.html'): continue for patt in (link_href, script_src, img_src, a_href): for m in patt.finditer(content or ""): ref = (m.group(1) or "").strip() if not ref or ref.startswith('http://') or ref.startswith('https://') or ref.startswith('data:') or '#' in ref: continue asset_refs.add(ref.lstrip('/')) # Add minimal stubs for missing local references (CSS/JS/pages only, not images) for ref in list(asset_refs): if ref not in normalized: if ref.lower().endswith('.css'): normalized[ref] = "/* generated stub */\n" elif ref.lower().endswith('.js'): normalized[ref] = "// generated stub\n" elif ref.lower().endswith('.html'): normalized[ref] = ( "\n\nPage\n" "

    Placeholder page

    This page was auto-created to satisfy an internal link.

    \n" ) # Note: We no longer create placeholder image files automatically # This prevents unwanted SVG stub files from being generated during image generation return normalized def inline_multipage_into_single_preview(files: Dict[str, str]) -> str: """Inline local CSS/JS referenced by index.html for preview inside a data: iframe. - Uses index.html as the base document - Inlines if the target exists in files - Inlines " return match.group(0) doc = _re.sub(r"]+src=\"([^\"]+)\"[^>]*>\s*", _inline_js, doc, flags=_re.IGNORECASE) # Inject a lightweight in-iframe client-side navigator to load other HTML files try: import json as _json import base64 as _b64 import re as _re html_pages = {k: v for k, v in files.items() if k.lower().endswith('.html')} # Ensure index.html entry restores the current body's HTML _m_body = _re.search(r"]*>([\s\S]*?)", doc, flags=_re.IGNORECASE) _index_body = _m_body.group(1) if _m_body else doc html_pages['index.html'] = _index_body encoded = _b64.b64encode(_json.dumps(html_pages).encode('utf-8')).decode('ascii') nav_script = ( "" ) m = _re.search(r"", doc, flags=_re.IGNORECASE) if m: i = m.start() doc = doc[:i] + nav_script + doc[i:] else: doc = doc + nav_script except Exception: # Non-fatal in preview pass return doc def extract_html_document(text: str) -> str: """Return substring starting from the first or if present, else original text. This ignores prose or planning notes before the actual HTML so previews don't break. """ if not text: return text lower = text.lower() idx = lower.find(" Dict[str, str]: """Infer npm dependencies from Svelte/TS imports across generated files. Returns mapping of package name -> semver (string). Uses conservative defaults when versions aren't known. Adds special-cased versions when known. """ import re as _re deps: Dict[str, str] = {} import_from = _re.compile(r"import\s+[^;]*?from\s+['\"]([^'\"]+)['\"]", _re.IGNORECASE) bare_import = _re.compile(r"import\s+['\"]([^'\"]+)['\"]", _re.IGNORECASE) def maybe_add(pkg: str): if not pkg or pkg.startswith('.') or pkg.startswith('/') or pkg.startswith('http'): return if pkg.startswith('svelte'): return if pkg not in deps: # Default to wildcard; adjust known packages below deps[pkg] = "*" for path, content in (files or {}).items(): if not isinstance(content, str): continue for m in import_from.finditer(content): maybe_add(m.group(1)) for m in bare_import.finditer(content): maybe_add(m.group(1)) # Pin known versions when sensible if '@gradio/dataframe' in deps: deps['@gradio/dataframe'] = '^0.19.1' return deps def build_svelte_package_json(existing_json_text: Optional[str], detected_dependencies: Dict[str, str]) -> str: """Create or merge a package.json for Svelte spaces. - If existing_json_text is provided, merge detected deps into its dependencies. - Otherwise, start from the template defaults provided by the user and add deps. - Always preserve template scripts and devDependencies. """ import json as _json # Template from the user's Svelte space scaffold template = { "name": "svelte", "private": True, "version": "0.0.0", "type": "module", "scripts": { "dev": "vite", "build": "vite build", "preview": "vite preview", "check": "svelte-check --tsconfig ./tsconfig.app.json && tsc -p tsconfig.node.json" }, "devDependencies": { "@sveltejs/vite-plugin-svelte": "^5.0.3", "@tsconfig/svelte": "^5.0.4", "svelte": "^5.28.1", "svelte-check": "^4.1.6", "typescript": "~5.8.3", "vite": "^6.3.5" } } result = template if existing_json_text: try: parsed = _json.loads(existing_json_text) # Merge with template as base, keeping template scripts/devDependencies if missing in parsed result = { **template, **{k: v for k, v in parsed.items() if k not in ("scripts", "devDependencies")}, } # If parsed contains its own scripts/devDependencies, prefer parsed to respect user's file if isinstance(parsed.get("scripts"), dict): result["scripts"] = parsed["scripts"] if isinstance(parsed.get("devDependencies"), dict): result["devDependencies"] = parsed["devDependencies"] except Exception: # Fallback to template if parse fails result = template # Merge dependencies existing_deps = result.get("dependencies", {}) if not isinstance(existing_deps, dict): existing_deps = {} merged = {**existing_deps, **(detected_dependencies or {})} if merged: result["dependencies"] = merged else: result.pop("dependencies", None) return _json.dumps(result, indent=2, ensure_ascii=False) + "\n" def history_render(history: History): return gr.update(visible=True), history def clear_history(): return [], [], None, "" # Empty lists for both tuple format and chatbot messages, None for file, empty string for website URL def update_image_input_visibility(model): """Update image input visibility based on selected model""" is_ernie_vl = model.get("id") == "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT" is_glm_vl = model.get("id") == "THUDM/GLM-4.1V-9B-Thinking" is_glm_45v = model.get("id") == "zai-org/GLM-4.5V" return gr.update(visible=is_ernie_vl or is_glm_vl or is_glm_45v) def process_image_for_model(image): """Convert image to base64 for model input""" if image is None: return None # Convert numpy array to PIL Image if needed import io import base64 import numpy as np from PIL import Image # Handle numpy array from Gradio if isinstance(image, np.ndarray): image = Image.fromarray(image) buffer = io.BytesIO() image.save(buffer, format='PNG') img_str = base64.b64encode(buffer.getvalue()).decode('utf-8') return f"data:image/png;base64,{img_str}" def compress_video_for_data_uri(video_bytes: bytes, max_size_mb: int = 8) -> bytes: """Compress video bytes for data URI embedding with size limit""" import subprocess import tempfile import os max_size = max_size_mb * 1024 * 1024 # If already small enough, return as-is if len(video_bytes) <= max_size: return video_bytes print(f"[VideoCompress] Video size {len(video_bytes)} bytes exceeds {max_size_mb}MB limit, attempting compression") try: # Create temp files with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_input: temp_input.write(video_bytes) temp_input_path = temp_input.name temp_output_path = temp_input_path.replace('.mp4', '_compressed.mp4') try: # Compress with ffmpeg - aggressive settings for small size subprocess.run([ 'ffmpeg', '-i', temp_input_path, '-vcodec', 'libx264', '-crf', '30', '-preset', 'fast', '-vf', 'scale=480:-1', '-r', '15', # Lower resolution and frame rate '-an', # Remove audio to save space '-y', temp_output_path ], check=True, capture_output=True, stderr=subprocess.DEVNULL) # Read compressed video with open(temp_output_path, 'rb') as f: compressed_bytes = f.read() print(f"[VideoCompress] Compressed from {len(video_bytes)} to {len(compressed_bytes)} bytes") return compressed_bytes except (subprocess.CalledProcessError, FileNotFoundError): print("[VideoCompress] ffmpeg compression failed, using original video") return video_bytes finally: # Clean up temp files for path in [temp_input_path, temp_output_path]: try: if os.path.exists(path): os.remove(path) except Exception: pass except Exception as e: print(f"[VideoCompress] Compression failed: {e}, using original video") return video_bytes def compress_audio_for_data_uri(audio_bytes: bytes, max_size_mb: int = 4) -> bytes: """Compress audio bytes for data URI embedding with size limit""" import subprocess import tempfile import os max_size = max_size_mb * 1024 * 1024 # If already small enough, return as-is if len(audio_bytes) <= max_size: return audio_bytes print(f"[AudioCompress] Audio size {len(audio_bytes)} bytes exceeds {max_size_mb}MB limit, attempting compression") try: # Create temp files with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_input: temp_input.write(audio_bytes) temp_input_path = temp_input.name temp_output_path = temp_input_path.replace('.wav', '_compressed.mp3') try: # Compress with ffmpeg - convert to MP3 with lower bitrate subprocess.run([ 'ffmpeg', '-i', temp_input_path, '-codec:a', 'libmp3lame', '-b:a', '64k', # Low bitrate MP3 '-y', temp_output_path ], check=True, capture_output=True, stderr=subprocess.DEVNULL) # Read compressed audio with open(temp_output_path, 'rb') as f: compressed_bytes = f.read() print(f"[AudioCompress] Compressed from {len(audio_bytes)} to {len(compressed_bytes)} bytes") return compressed_bytes except (subprocess.CalledProcessError, FileNotFoundError): print("[AudioCompress] ffmpeg compression failed, using original audio") return audio_bytes finally: # Clean up temp files for path in [temp_input_path, temp_output_path]: try: if os.path.exists(path): os.remove(path) except Exception: pass except Exception as e: print(f"[AudioCompress] Compression failed: {e}, using original audio") return audio_bytes # --------------------------------------------------------------------------- # General temp media file management (per-session tracking and cleanup) # --------------------------------------------------------------------------- MEDIA_TEMP_DIR = os.path.join(tempfile.gettempdir(), "anycoder_media") MEDIA_FILE_TTL_SECONDS = 6 * 60 * 60 # 6 hours _SESSION_MEDIA_FILES: Dict[str, List[str]] = {} _MEDIA_FILES_LOCK = threading.Lock() # Global dictionary to store temporary media files for the session temp_media_files = {} def _ensure_media_dir_exists() -> None: """Ensure the media temp directory exists.""" try: os.makedirs(MEDIA_TEMP_DIR, exist_ok=True) except Exception: pass def track_session_media_file(session_id: Optional[str], file_path: str) -> None: """Track a media file for session-based cleanup.""" if not session_id or not file_path: return with _MEDIA_FILES_LOCK: if session_id not in _SESSION_MEDIA_FILES: _SESSION_MEDIA_FILES[session_id] = [] _SESSION_MEDIA_FILES[session_id].append(file_path) def cleanup_session_media(session_id: Optional[str]) -> None: """Clean up media files for a specific session.""" if not session_id: return with _MEDIA_FILES_LOCK: files_to_clean = _SESSION_MEDIA_FILES.pop(session_id, []) for path in files_to_clean: try: if path and os.path.exists(path): os.unlink(path) except Exception: # Best-effort cleanup pass def reap_old_media(ttl_seconds: int = MEDIA_FILE_TTL_SECONDS) -> None: """Delete old media files in the temp directory based on modification time.""" try: _ensure_media_dir_exists() now_ts = time.time() for name in os.listdir(MEDIA_TEMP_DIR): path = os.path.join(MEDIA_TEMP_DIR, name) if os.path.isfile(path): try: mtime = os.path.getmtime(path) if (now_ts - mtime) > ttl_seconds: os.unlink(path) except Exception: pass except Exception: # Temp dir might not exist or be accessible; ignore pass def cleanup_all_temp_media_on_startup() -> None: """Clean up all temporary media files on app startup.""" try: # Clean up temp_media_files registry temp_media_files.clear() # Clean up actual files from disk (assume all are orphaned on startup) _ensure_media_dir_exists() for name in os.listdir(MEDIA_TEMP_DIR): path = os.path.join(MEDIA_TEMP_DIR, name) if os.path.isfile(path): try: os.unlink(path) except Exception: pass # Clear session tracking with _MEDIA_FILES_LOCK: _SESSION_MEDIA_FILES.clear() print("[StartupCleanup] Cleaned up orphaned temporary media files") except Exception as e: print(f"[StartupCleanup] Error during media cleanup: {str(e)}") def cleanup_all_temp_media_on_shutdown() -> None: """Clean up all temporary media files on app shutdown.""" try: print("[ShutdownCleanup] Cleaning up temporary media files...") # Clean up temp_media_files registry and remove files for file_id, file_info in temp_media_files.items(): try: if os.path.exists(file_info['path']): os.unlink(file_info['path']) except Exception: pass temp_media_files.clear() # Clean up all session files with _MEDIA_FILES_LOCK: for session_id, file_paths in _SESSION_MEDIA_FILES.items(): for path in file_paths: try: if path and os.path.exists(path): os.unlink(path) except Exception: pass _SESSION_MEDIA_FILES.clear() print("[ShutdownCleanup] Temporary media cleanup completed") except Exception as e: print(f"[ShutdownCleanup] Error during cleanup: {str(e)}") # Register shutdown cleanup handler atexit.register(cleanup_all_temp_media_on_shutdown) def create_temp_media_url(media_bytes: bytes, filename: str, media_type: str = "image", session_id: Optional[str] = None) -> str: """Create a temporary file and return a local URL for preview. Args: media_bytes: Raw bytes of the media file filename: Name for the file (will be made unique) media_type: Type of media ('image', 'video', 'audio') session_id: Session ID for tracking cleanup Returns: Temporary file URL for preview or error message """ try: # Create unique filename with timestamp and UUID timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") unique_id = str(uuid.uuid4())[:8] base_name, ext = os.path.splitext(filename) unique_filename = f"{media_type}_{timestamp}_{unique_id}_{base_name}{ext}" # Create temporary file in the dedicated directory _ensure_media_dir_exists() temp_path = os.path.join(MEDIA_TEMP_DIR, unique_filename) # Write media bytes to temporary file with open(temp_path, 'wb') as f: f.write(media_bytes) # Track file for session-based cleanup if session_id: track_session_media_file(session_id, temp_path) # Store the file info for later upload file_id = f"{media_type}_{unique_id}" temp_media_files[file_id] = { 'path': temp_path, 'filename': filename, 'media_type': media_type, 'media_bytes': media_bytes } # Return file:// URL for preview file_url = f"file://{temp_path}" print(f"[TempMedia] Created temporary {media_type} file: {file_url}") return file_url except Exception as e: print(f"[TempMedia] Failed to create temporary file: {str(e)}") return f"Error creating temporary {media_type} file: {str(e)}" def upload_media_to_hf(media_bytes: bytes, filename: str, media_type: str = "image", token: gr.OAuthToken | None = None, use_temp: bool = True) -> str: """Upload media file to user's Hugging Face account or create temporary file. Args: media_bytes: Raw bytes of the media file filename: Name for the file (will be made unique) media_type: Type of media ('image', 'video', 'audio') token: OAuth token from gr.login (takes priority over env var) use_temp: If True, create temporary file for preview; if False, upload to HF Returns: Permanent URL to the uploaded file, temporary URL, or error message """ try: # If use_temp is True, create temporary file for preview if use_temp: return create_temp_media_url(media_bytes, filename, media_type) # Otherwise, upload to Hugging Face for permanent URL # Try to get token from OAuth first, then fall back to environment variable hf_token = None if token and token.token: hf_token = token.token else: hf_token = os.getenv('HF_TOKEN') if not hf_token: return "Error: Please log in with your Hugging Face account to upload media, or set HF_TOKEN environment variable." # Initialize HF API api = HfApi(token=hf_token) # Get current user info to determine username try: user_info = api.whoami() username = user_info.get('name', 'unknown-user') except Exception as e: print(f"[HFUpload] Could not get user info: {e}") username = 'anycoder-user' # Create repository name for media storage repo_name = f"{username}/anycoder-media" # Try to create the repository if it doesn't exist try: api.create_repo( repo_id=repo_name, repo_type="dataset", private=False, exist_ok=True ) print(f"[HFUpload] Repository {repo_name} ready") except Exception as e: print(f"[HFUpload] Repository creation/access issue: {e}") # Continue anyway, repo might already exist # Create unique filename with timestamp and UUID timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") unique_id = str(uuid.uuid4())[:8] base_name, ext = os.path.splitext(filename) unique_filename = f"{media_type}/{timestamp}_{unique_id}_{base_name}{ext}" # Create temporary file for upload with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file: temp_file.write(media_bytes) temp_path = temp_file.name try: # Upload file to HF repository api.upload_file( path_or_fileobj=temp_path, path_in_repo=unique_filename, repo_id=repo_name, repo_type="dataset", commit_message=f"Upload {media_type} generated by AnyCoder" ) # Generate permanent URL permanent_url = f"https://huggingface.co/datasets/{repo_name}/resolve/main/{unique_filename}" print(f"[HFUpload] Successfully uploaded {media_type} to {permanent_url}") return permanent_url finally: # Clean up temporary file try: os.unlink(temp_path) except Exception: pass except Exception as e: print(f"[HFUpload] Upload failed: {str(e)}") return f"Error uploading {media_type} to Hugging Face: {str(e)}" def upload_temp_files_to_hf_and_replace_urls(html_content: str, token: gr.OAuthToken | None = None) -> str: """Upload all temporary media files to HF and replace their URLs in HTML content. Args: html_content: HTML content containing temporary file URLs token: OAuth token for HF authentication Returns: Updated HTML content with permanent HF URLs """ try: if not temp_media_files: print("[DeployUpload] No temporary media files to upload") return html_content print(f"[DeployUpload] Uploading {len(temp_media_files)} temporary media files to HF") updated_content = html_content for file_id, file_info in temp_media_files.items(): try: # Upload to HF with permanent URL permanent_url = upload_media_to_hf( file_info['media_bytes'], file_info['filename'], file_info['media_type'], token, use_temp=False # Force permanent upload ) if not permanent_url.startswith("Error"): # Replace the temporary file URL with permanent URL temp_url = f"file://{file_info['path']}" updated_content = updated_content.replace(temp_url, permanent_url) print(f"[DeployUpload] Replaced {temp_url} with {permanent_url}") else: print(f"[DeployUpload] Failed to upload {file_id}: {permanent_url}") except Exception as e: print(f"[DeployUpload] Error uploading {file_id}: {str(e)}") continue # Clean up temporary files after upload cleanup_temp_media_files() return updated_content except Exception as e: print(f"[DeployUpload] Failed to upload temporary files: {str(e)}") return html_content def cleanup_temp_media_files(): """Clean up temporary media files from disk and memory.""" try: for file_id, file_info in temp_media_files.items(): try: if os.path.exists(file_info['path']): os.remove(file_info['path']) print(f"[TempCleanup] Removed {file_info['path']}") except Exception as e: print(f"[TempCleanup] Failed to remove {file_info['path']}: {str(e)}") # Clear the global dictionary temp_media_files.clear() print("[TempCleanup] Cleared temporary media files registry") except Exception as e: print(f"[TempCleanup] Error during cleanup: {str(e)}") def generate_image_with_gemini(prompt: str, image_index: int = 0, token: gr.OAuthToken | None = None) -> str: """Generate image using Google Gemini 2.5 Flash Image Preview via OpenRouter. Uses google/gemini-2.5-flash-image-preview:free via OpenRouter chat completions API. Returns an HTML tag whose src is an uploaded temporary URL. """ try: print(f"[Text2Image] Starting generation with prompt: {prompt[:100]}...") # Check for OpenRouter API key openrouter_key = os.getenv('OPENROUTER_API_KEY') if not openrouter_key: print("[Text2Image] Missing OPENROUTER_API_KEY") return "Error: OPENROUTER_API_KEY environment variable is not set. Please set it to your OpenRouter API key." import requests import json as _json import base64 import io as _io from PIL import Image # Create the chat completion request for text-to-image headers = { "Authorization": f"Bearer {openrouter_key}", "Content-Type": "application/json" } data = { "model": "google/gemini-2.5-flash-image-preview:free", "messages": [ { "role": "user", "content": f"Generate an image based on this description: {prompt}" } ], "temperature": 0.7, "max_tokens": 1000 } try: print("[Text2Image] Making API request to OpenRouter...") response = requests.post( "https://openrouter.ai/api/v1/chat/completions", headers=headers, json=data, timeout=60 ) response.raise_for_status() result_data = response.json() print(f"[Text2Image] Received API response: {_json.dumps(result_data, indent=2)}") # Extract the generated image from the response (using same pattern as image-to-image) message = result_data.get('choices', [{}])[0].get('message', {}) if message and 'images' in message and message['images']: # Get the first image from the 'images' list image_data = message['images'][0] base64_string = image_data.get('image_url', {}).get('url', '') if base64_string and ',' in base64_string: # Remove the "data:image/png;base64," prefix base64_content = base64_string.split(',')[1] # Decode the base64 string and create a PIL image img_bytes = base64.b64decode(base64_content) generated_image = Image.open(_io.BytesIO(img_bytes)) # Convert PIL image to JPEG bytes for upload out_buf = _io.BytesIO() generated_image.convert('RGB').save(out_buf, format='JPEG', quality=90, optimize=True) image_bytes = out_buf.getvalue() else: raise RuntimeError(f"API returned an invalid image format. Response: {_json.dumps(result_data, indent=2)}") else: raise RuntimeError(f"API did not return an image. Full Response: {_json.dumps(result_data, indent=2)}") except requests.exceptions.HTTPError as err: error_body = err.response.text if err.response.status_code == 401: return "Error: Authentication failed. Check your OpenRouter API key." elif err.response.status_code == 429: return "Error: Rate limit exceeded or insufficient credits. Check your OpenRouter account." else: return f"Error: An API error occurred: {error_body}" except Exception as e: return f"Error: An unexpected error occurred: {str(e)}" # Upload and return HTML tag print("[Text2Image] Uploading image to HF...") filename = f"generated_image_{image_index}.jpg" temp_url = upload_media_to_hf(image_bytes, filename, "image", token, use_temp=True) if temp_url.startswith("Error"): print(f"[Text2Image] Upload failed: {temp_url}") return temp_url print(f"[Text2Image] Successfully generated image: {temp_url}") return f"\"{prompt}\"" except Exception as e: print(f"Text-to-image generation error: {str(e)}") return f"Error generating image (text-to-image): {str(e)}" def generate_image_with_qwen(prompt: str, image_index: int = 0, token: gr.OAuthToken | None = None) -> str: """Generate image using Qwen image model via Hugging Face InferenceClient and upload to HF for permanent URL""" try: # Check if HF_TOKEN is available if not os.getenv('HF_TOKEN'): return "Error: HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token." # Create InferenceClient for Qwen image generation client = InferenceClient( provider="auto", api_key=os.getenv('HF_TOKEN'), bill_to="huggingface", ) # Generate image using Qwen/Qwen-Image model image = client.text_to_image( prompt, model="Qwen/Qwen-Image", ) # Resize image to reduce size while maintaining quality max_size = 1024 # Increased size since we're not using data URIs if image.width > max_size or image.height > max_size: image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS) # Convert PIL Image to bytes for upload import io buffer = io.BytesIO() # Save as JPEG with good quality since we're not embedding image.convert('RGB').save(buffer, format='JPEG', quality=90, optimize=True) image_bytes = buffer.getvalue() # Create temporary URL for preview (will be uploaded to HF during deploy) filename = f"generated_image_{image_index}.jpg" temp_url = upload_media_to_hf(image_bytes, filename, "image", token, use_temp=True) # Check if creation was successful if temp_url.startswith("Error"): return temp_url # Return HTML img tag with temporary URL return f'{prompt}' except Exception as e: print(f"Image generation error: {str(e)}") return f"Error generating image: {str(e)}" def generate_image_to_image(input_image_data, prompt: str, token: gr.OAuthToken | None = None) -> str: """Generate an image using image-to-image via OpenRouter. Uses Google Gemini 2.5 Flash Image Preview via OpenRouter chat completions API. Returns an HTML tag whose src is an uploaded temporary URL. """ try: # Check for OpenRouter API key openrouter_key = os.getenv('OPENROUTER_API_KEY') if not openrouter_key: return "Error: OPENROUTER_API_KEY environment variable is not set. Please set it to your OpenRouter API key." # Normalize input image to bytes import io from PIL import Image import base64 import requests import json as _json try: import numpy as np except Exception: np = None if hasattr(input_image_data, 'read'): raw = input_image_data.read() pil_image = Image.open(io.BytesIO(raw)) elif hasattr(input_image_data, 'mode') and hasattr(input_image_data, 'size'): pil_image = input_image_data elif np is not None and isinstance(input_image_data, np.ndarray): pil_image = Image.fromarray(input_image_data) elif isinstance(input_image_data, (bytes, bytearray)): pil_image = Image.open(io.BytesIO(input_image_data)) else: pil_image = Image.open(io.BytesIO(bytes(input_image_data))) if pil_image.mode != 'RGB': pil_image = pil_image.convert('RGB') # Resize input image to avoid request body size limits max_input_size = 1024 if pil_image.width > max_input_size or pil_image.height > max_input_size: pil_image.thumbnail((max_input_size, max_input_size), Image.Resampling.LANCZOS) # Convert to base64 import io as _io buffered = _io.BytesIO() pil_image.save(buffered, format='PNG') img_b64 = base64.b64encode(buffered.getvalue()).decode('utf-8') # Call OpenRouter API headers = { "Authorization": f"Bearer {openrouter_key}", "Content-Type": "application/json", "HTTP-Referer": os.getenv("YOUR_SITE_URL", "https://example.com"), "X-Title": os.getenv("YOUR_SITE_NAME", "AnyCoder Image I2I"), } payload = { "model": "google/gemini-2.5-flash-image-preview:free", "messages": [ { "role": "user", "content": [ {"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_b64}"}}, ], } ], "max_tokens": 2048, } try: resp = requests.post( "https://openrouter.ai/api/v1/chat/completions", headers=headers, data=_json.dumps(payload), timeout=60, ) resp.raise_for_status() result_data = resp.json() # Corrected response parsing logic message = result_data.get('choices', [{}])[0].get('message', {}) if message and 'images' in message and message['images']: # Get the first image from the 'images' list image_data = message['images'][0] base64_string = image_data.get('image_url', {}).get('url', '') if base64_string and ',' in base64_string: # Remove the "data:image/png;base64," prefix base64_content = base64_string.split(',')[1] # Decode the base64 string and create a PIL image img_bytes = base64.b64decode(base64_content) edited_image = Image.open(_io.BytesIO(img_bytes)) # Convert PIL image to JPEG bytes for upload out_buf = _io.BytesIO() edited_image.convert('RGB').save(out_buf, format='JPEG', quality=90, optimize=True) image_bytes = out_buf.getvalue() else: raise RuntimeError(f"API returned an invalid image format. Response: {_json.dumps(result_data, indent=2)}") else: raise RuntimeError(f"API did not return an image. Full Response: {_json.dumps(result_data, indent=2)}") except requests.exceptions.HTTPError as err: error_body = err.response.text if err.response.status_code == 401: return "Error: Authentication failed. Check your OpenRouter API key." elif err.response.status_code == 429: return "Error: Rate limit exceeded or insufficient credits. Check your OpenRouter account." else: return f"Error: An API error occurred: {error_body}" except Exception as e: return f"Error: An unexpected error occurred: {str(e)}" # Upload and return HTML tag filename = "image_to_image_result.jpg" temp_url = upload_media_to_hf(image_bytes, filename, "image", token, use_temp=True) if temp_url.startswith("Error"): return temp_url return f"\"{prompt}\"" except Exception as e: print(f"Image-to-image generation error: {str(e)}") return f"Error generating image (image-to-image): {str(e)}" def generate_video_from_image(input_image_data, prompt: str, session_id: Optional[str] = None, token: gr.OAuthToken | None = None) -> str: """Generate a video from an input image and prompt using Hugging Face InferenceClient. Returns an HTML