Spaces:
Running
Running
import os | |
import re | |
from http import HTTPStatus | |
from typing import Dict, List, Optional, Tuple | |
import base64 | |
import mimetypes | |
import PyPDF2 | |
import docx | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import pytesseract | |
import requests | |
from urllib.parse import urlparse, urljoin | |
from bs4 import BeautifulSoup | |
import html2text | |
import json | |
import time | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from tavily import TavilyClient | |
# Configuration | |
SystemPrompt = """You are a helpful coding assistant. You help users create applications by generating code based on their requirements. | |
When asked to create an application, you should: | |
1. Understand the user's requirements | |
2. Generate clean, working code | |
3. Provide HTML output when appropriate for web applications | |
4. Include necessary comments and documentation | |
5. Ensure the code is functional and follows best practices | |
For website redesign tasks: | |
- Use the provided original HTML code as the starting point for redesign | |
- Preserve all original content, structure, and functionality | |
- Keep the same semantic HTML structure but enhance the styling | |
- Reuse all original images and their URLs from the HTML code | |
- Create a modern, responsive design with improved typography and spacing | |
- Use modern CSS frameworks and design patterns | |
- Ensure accessibility and mobile responsiveness | |
- Maintain the same navigation and user flow | |
- Enhance the visual design while keeping the original layout structure | |
If an image is provided, analyze it and use the visual information to better understand the user's requirements. | |
Always respond with code that can be executed or rendered directly. | |
Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text.""" | |
# System prompt with search capability | |
SystemPromptWithSearch = """You are a helpful coding assistant with access to real-time web search. You help users create applications by generating code based on their requirements. | |
When asked to create an application, you should: | |
1. Understand the user's requirements | |
2. Use web search when needed to find the latest information, best practices, or specific technologies | |
3. Generate clean, working code | |
4. Provide HTML output when appropriate for web applications | |
5. Include necessary comments and documentation | |
6. Ensure the code is functional and follows best practices | |
For website redesign tasks: | |
- Use the provided original HTML code as the starting point for redesign | |
- Preserve all original content, structure, and functionality | |
- Keep the same semantic HTML structure but enhance the styling | |
- Reuse all original images and their URLs from the HTML code | |
- Use web search to find current design trends and best practices for the specific type of website | |
- Create a modern, responsive design with improved typography and spacing | |
- Use modern CSS frameworks and design patterns | |
- Ensure accessibility and mobile responsiveness | |
- Maintain the same navigation and user flow | |
- Enhance the visual design while keeping the original layout structure | |
If an image is provided, analyze it and use the visual information to better understand the user's requirements. | |
Always respond with code that can be executed or rendered directly. | |
Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text.""" | |
# Available models | |
AVAILABLE_MODELS = [ | |
{ | |
"name": "DeepSeek V3", | |
"id": "deepseek-ai/DeepSeek-V3-0324", | |
"description": "DeepSeek V3 model for code generation" | |
}, | |
{ | |
"name": "DeepSeek R1", | |
"id": "deepseek-ai/DeepSeek-R1-0528", | |
"description": "DeepSeek R1 model for code generation" | |
}, | |
{ | |
"name": "ERNIE-4.5-VL", | |
"id": "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT", | |
"description": "ERNIE-4.5-VL model for multimodal code generation with image support" | |
}, | |
{ | |
"name": "MiniMax M1", | |
"id": "MiniMaxAI/MiniMax-M1-80k", | |
"description": "MiniMax M1 model for code generation and general tasks" | |
}, | |
{ | |
"name": "Qwen3-235B-A22B", | |
"id": "Qwen/Qwen3-235B-A22B", | |
"description": "Qwen3-235B-A22B model for code generation and general tasks" | |
}, | |
{ | |
"name": "SmolLM3-3B", | |
"id": "HuggingFaceTB/SmolLM3-3B", | |
"description": "SmolLM3-3B model for code generation and general tasks" | |
} | |
] | |
DEMO_LIST = [ | |
{ | |
"title": "Todo App", | |
"description": "Create a simple todo application with add, delete, and mark as complete functionality" | |
}, | |
{ | |
"title": "Calculator", | |
"description": "Build a basic calculator with addition, subtraction, multiplication, and division" | |
}, | |
{ | |
"title": "Weather Dashboard", | |
"description": "Create a weather dashboard that displays current weather information" | |
}, | |
{ | |
"title": "Chat Interface", | |
"description": "Build a chat interface with message history and user input" | |
}, | |
{ | |
"title": "E-commerce Product Card", | |
"description": "Create a product card component for an e-commerce website" | |
}, | |
{ | |
"title": "Login Form", | |
"description": "Build a responsive login form with validation" | |
}, | |
{ | |
"title": "Dashboard Layout", | |
"description": "Create a dashboard layout with sidebar navigation and main content area" | |
}, | |
{ | |
"title": "Data Table", | |
"description": "Build a data table with sorting and filtering capabilities" | |
}, | |
{ | |
"title": "Image Gallery", | |
"description": "Create an image gallery with lightbox functionality and responsive grid layout" | |
}, | |
{ | |
"title": "UI from Image", | |
"description": "Upload an image of a UI design and I'll generate the HTML/CSS code for it" | |
}, | |
{ | |
"title": "Extract Text from Image", | |
"description": "Upload an image containing text and I'll extract and process the text content" | |
}, | |
{ | |
"title": "Website Redesign", | |
"description": "Enter a website URL to extract its content and redesign it with a modern, responsive layout" | |
} | |
] | |
# HF Inference Client | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
client = InferenceClient( | |
provider="auto", | |
api_key=HF_TOKEN, | |
bill_to="huggingface" | |
) | |
# Type definitions | |
History = List[Tuple[str, str]] | |
Messages = List[Dict[str, str]] | |
# Tavily Search Client | |
TAVILY_API_KEY = os.getenv('TAVILY_API_KEY') | |
tavily_client = None | |
if TAVILY_API_KEY: | |
try: | |
tavily_client = TavilyClient(api_key=TAVILY_API_KEY) | |
except Exception as e: | |
print(f"Failed to initialize Tavily client: {e}") | |
tavily_client = None | |
def history_to_messages(history: History, system: str) -> Messages: | |
messages = [{'role': 'system', 'content': system}] | |
for h in history: | |
# Handle multimodal content in history | |
user_content = h[0] | |
if isinstance(user_content, list): | |
# Extract text from multimodal content | |
text_content = "" | |
for item in user_content: | |
if isinstance(item, dict) and item.get("type") == "text": | |
text_content += item.get("text", "") | |
user_content = text_content if text_content else str(user_content) | |
messages.append({'role': 'user', 'content': user_content}) | |
messages.append({'role': 'assistant', 'content': h[1]}) | |
return messages | |
def messages_to_history(messages: Messages) -> Tuple[str, History]: | |
assert messages[0]['role'] == 'system' | |
history = [] | |
for q, r in zip(messages[1::2], messages[2::2]): | |
# Extract text content from multimodal messages for history | |
user_content = q['content'] | |
if isinstance(user_content, list): | |
text_content = "" | |
for item in user_content: | |
if isinstance(item, dict) and item.get("type") == "text": | |
text_content += item.get("text", "") | |
user_content = text_content if text_content else str(user_content) | |
history.append([user_content, r['content']]) | |
return history | |
def history_to_chatbot_messages(history: History) -> List[Dict[str, str]]: | |
"""Convert history tuples to chatbot message format""" | |
messages = [] | |
for user_msg, assistant_msg in history: | |
# Handle multimodal content | |
if isinstance(user_msg, list): | |
text_content = "" | |
for item in user_msg: | |
if isinstance(item, dict) and item.get("type") == "text": | |
text_content += item.get("text", "") | |
user_msg = text_content if text_content else str(user_msg) | |
messages.append({"role": "user", "content": user_msg}) | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
return messages | |
def remove_code_block(text): | |
# Try to match code blocks with language markers | |
patterns = [ | |
r'```(?:html|HTML)\n([\s\S]+?)\n```', # Match ```html or ```HTML | |
r'```\n([\s\S]+?)\n```', # Match code blocks without language markers | |
r'```([\s\S]+?)```' # Match code blocks without line breaks | |
] | |
for pattern in patterns: | |
match = re.search(pattern, text, re.DOTALL) | |
if match: | |
extracted = match.group(1).strip() | |
return extracted | |
# If no code block is found, check if the entire text is HTML | |
if text.strip().startswith('<!DOCTYPE html>') or text.strip().startswith('<html') or text.strip().startswith('<'): | |
return text.strip() | |
return text.strip() | |
def history_render(history: History): | |
return gr.update(visible=True), history | |
def clear_history(): | |
return [], [], None, "" # Empty lists for both tuple format and chatbot messages, None for file, empty string for website URL | |
def update_image_input_visibility(model): | |
"""Update image input visibility based on selected model""" | |
is_ernie_vl = model.get("id") == "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT" | |
return gr.update(visible=is_ernie_vl) | |
def process_image_for_model(image): | |
"""Convert image to base64 for model input""" | |
if image is None: | |
return None | |
# Convert numpy array to PIL Image if needed | |
import io | |
import base64 | |
import numpy as np | |
from PIL import Image | |
# Handle numpy array from Gradio | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
buffer = io.BytesIO() | |
image.save(buffer, format='PNG') | |
img_str = base64.b64encode(buffer.getvalue()).decode() | |
return f"data:image/png;base64,{img_str}" | |
def create_multimodal_message(text, image=None): | |
"""Create a multimodal message with text and optional image""" | |
if image is None: | |
return {"role": "user", "content": text} | |
content = [ | |
{ | |
"type": "text", | |
"text": text | |
}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": process_image_for_model(image) | |
} | |
} | |
] | |
return {"role": "user", "content": content} | |
# Updated for faster Tavily search and closer prompt usage | |
# Uses 'advanced' search_depth and auto_parameters=True for speed and relevance | |
def perform_web_search(query: str, max_results: int = 5, include_domains=None, exclude_domains=None) -> str: | |
"""Perform web search using Tavily with default parameters""" | |
if not tavily_client: | |
return "Web search is not available. Please set the TAVILY_API_KEY environment variable." | |
try: | |
# Use Tavily defaults with advanced search depth for better results | |
search_params = { | |
"search_depth": "advanced", | |
"max_results": min(max(1, max_results), 20) | |
} | |
if include_domains is not None: | |
search_params["include_domains"] = include_domains | |
if exclude_domains is not None: | |
search_params["exclude_domains"] = exclude_domains | |
response = tavily_client.search(query, **search_params) | |
search_results = [] | |
for result in response.get('results', []): | |
title = result.get('title', 'No title') | |
url = result.get('url', 'No URL') | |
content = result.get('content', 'No content') | |
search_results.append(f"Title: {title}\nURL: {url}\nContent: {content}\n") | |
if search_results: | |
return "Web Search Results:\n\n" + "\n---\n".join(search_results) | |
else: | |
return "No search results found." | |
except Exception as e: | |
return f"Search error: {str(e)}" | |
def enhance_query_with_search(query: str, enable_search: bool) -> str: | |
"""Enhance the query with web search results if search is enabled""" | |
if not enable_search or not tavily_client: | |
return query | |
# Perform search to get relevant information | |
search_results = perform_web_search(query) | |
# Combine original query with search results | |
enhanced_query = f"""Original Query: {query} | |
{search_results} | |
Please use the search results above to help create the requested application with the most up-to-date information and best practices.""" | |
return enhanced_query | |
def send_to_sandbox(code): | |
# Add a wrapper to inject necessary permissions and ensure full HTML | |
wrapped_code = f""" | |
<!DOCTYPE html> | |
<html> | |
<head> | |
<meta charset=\"UTF-8\"> | |
<meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\"> | |
<script> | |
// Safe localStorage polyfill | |
const safeStorage = {{ | |
_data: {{}}, | |
getItem: function(key) {{ return this._data[key] || null; }}, | |
setItem: function(key, value) {{ this._data[key] = value; }}, | |
removeItem: function(key) {{ delete this._data[key]; }}, | |
clear: function() {{ this._data = {{}}; }} | |
}}; | |
Object.defineProperty(window, 'localStorage', {{ | |
value: safeStorage, | |
writable: false | |
}}); | |
window.onerror = function(message, source, lineno, colno, error) {{ | |
console.error('Error:', message); | |
}}; | |
</script> | |
</head> | |
<body> | |
{code} | |
</body> | |
</html> | |
""" | |
encoded_html = base64.b64encode(wrapped_code.encode('utf-8')).decode('utf-8') | |
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}" | |
iframe = f'<iframe src="{data_uri}" width="100%" height="920px" sandbox="allow-scripts allow-same-origin allow-forms allow-popups allow-modals allow-presentation" allow="display-capture"></iframe>' | |
return iframe | |
def demo_card_click(e: gr.EventData): | |
try: | |
# Get the index from the event data | |
if hasattr(e, '_data') and e._data: | |
# Try different ways to get the index | |
if 'index' in e._data: | |
index = e._data['index'] | |
elif 'component' in e._data and 'index' in e._data['component']: | |
index = e._data['component']['index'] | |
elif 'target' in e._data and 'index' in e._data['target']: | |
index = e._data['target']['index'] | |
else: | |
# If we can't get the index, try to extract it from the card data | |
index = 0 | |
else: | |
index = 0 | |
# Ensure index is within bounds | |
if index >= len(DEMO_LIST): | |
index = 0 | |
return DEMO_LIST[index]['description'] | |
except (KeyError, IndexError, AttributeError) as e: | |
# Return the first demo description as fallback | |
return DEMO_LIST[0]['description'] | |
def extract_text_from_image(image_path): | |
"""Extract text from image using OCR""" | |
try: | |
# Check if tesseract is available | |
try: | |
pytesseract.get_tesseract_version() | |
except Exception: | |
return "Error: Tesseract OCR is not installed. Please install Tesseract to extract text from images. See install_tesseract.md for instructions." | |
# Read image using OpenCV | |
image = cv2.imread(image_path) | |
if image is None: | |
return "Error: Could not read image file" | |
# Convert to RGB (OpenCV uses BGR) | |
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# Preprocess image for better OCR results | |
# Convert to grayscale | |
gray = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2GRAY) | |
# Apply thresholding to get binary image | |
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) | |
# Extract text using pytesseract | |
text = pytesseract.image_to_string(binary, config='--psm 6') | |
return text.strip() if text.strip() else "No text found in image" | |
except Exception as e: | |
return f"Error extracting text from image: {e}" | |
def extract_text_from_file(file_path): | |
if not file_path: | |
return "" | |
mime, _ = mimetypes.guess_type(file_path) | |
ext = os.path.splitext(file_path)[1].lower() | |
try: | |
if ext == ".pdf": | |
with open(file_path, "rb") as f: | |
reader = PyPDF2.PdfReader(f) | |
return "\n".join(page.extract_text() or "" for page in reader.pages) | |
elif ext in [".txt", ".md"]: | |
with open(file_path, "r", encoding="utf-8") as f: | |
return f.read() | |
elif ext == ".csv": | |
with open(file_path, "r", encoding="utf-8") as f: | |
return f.read() | |
elif ext == ".docx": | |
doc = docx.Document(file_path) | |
return "\n".join([para.text for para in doc.paragraphs]) | |
elif ext.lower() in [".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".tif", ".gif", ".webp"]: | |
return extract_text_from_image(file_path) | |
else: | |
return "" | |
except Exception as e: | |
return f"Error extracting text: {e}" | |
def extract_website_content(url: str) -> str: | |
"""Extract HTML code and content from a website URL""" | |
try: | |
# Validate URL | |
parsed_url = urlparse(url) | |
if not parsed_url.scheme: | |
url = "https://" + url | |
parsed_url = urlparse(url) | |
if not parsed_url.netloc: | |
return "Error: Invalid URL provided" | |
# Set comprehensive headers to mimic a real browser request | |
headers = { | |
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36', | |
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', | |
'Accept-Language': 'en-US,en;q=0.9', | |
'Accept-Encoding': 'gzip, deflate, br', | |
'DNT': '1', | |
'Connection': 'keep-alive', | |
'Upgrade-Insecure-Requests': '1', | |
'Sec-Fetch-Dest': 'document', | |
'Sec-Fetch-Mode': 'navigate', | |
'Sec-Fetch-Site': 'none', | |
'Sec-Fetch-User': '?1', | |
'Cache-Control': 'max-age=0' | |
} | |
# Create a session to maintain cookies and handle redirects | |
session = requests.Session() | |
session.headers.update(headers) | |
# Make the request with retry logic | |
max_retries = 3 | |
for attempt in range(max_retries): | |
try: | |
response = session.get(url, timeout=15, allow_redirects=True) | |
response.raise_for_status() | |
break | |
except requests.exceptions.HTTPError as e: | |
if e.response.status_code == 403 and attempt < max_retries - 1: | |
# Try with different User-Agent on 403 | |
session.headers['User-Agent'] = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36' | |
continue | |
else: | |
raise | |
# Get the raw HTML content with proper encoding | |
try: | |
# Try to get the content with automatic encoding detection | |
response.encoding = response.apparent_encoding | |
raw_html = response.text | |
except: | |
# Fallback to UTF-8 if encoding detection fails | |
raw_html = response.content.decode('utf-8', errors='ignore') | |
# Debug: Check if we got valid HTML | |
if not raw_html.strip().startswith('<!DOCTYPE') and not raw_html.strip().startswith('<html'): | |
print(f"Warning: Response doesn't look like HTML. First 200 chars: {raw_html[:200]}") | |
print(f"Response headers: {dict(response.headers)}") | |
print(f"Response encoding: {response.encoding}") | |
print(f"Apparent encoding: {response.apparent_encoding}") | |
# Try alternative approaches | |
try: | |
raw_html = response.content.decode('latin-1', errors='ignore') | |
print("Tried latin-1 decoding") | |
except: | |
try: | |
raw_html = response.content.decode('utf-8', errors='ignore') | |
print("Tried UTF-8 decoding") | |
except: | |
raw_html = response.content.decode('cp1252', errors='ignore') | |
print("Tried cp1252 decoding") | |
# Parse HTML content for analysis | |
soup = BeautifulSoup(raw_html, 'html.parser') | |
# Check if this is a JavaScript-heavy site | |
script_tags = soup.find_all('script') | |
if len(script_tags) > 10: | |
print(f"Warning: This site has {len(script_tags)} script tags - it may be a JavaScript-heavy site") | |
print("The content might be loaded dynamically and not available in the initial HTML") | |
# Extract title | |
title = soup.find('title') | |
title_text = title.get_text().strip() if title else "No title found" | |
# Extract meta description | |
meta_desc = soup.find('meta', attrs={'name': 'description'}) | |
description = meta_desc.get('content', '') if meta_desc else "" | |
# Extract main content areas for analysis | |
content_sections = [] | |
main_selectors = [ | |
'main', 'article', '.content', '.main-content', '.post-content', | |
'#content', '#main', '.entry-content', '.post-body' | |
] | |
for selector in main_selectors: | |
elements = soup.select(selector) | |
for element in elements: | |
text = element.get_text().strip() | |
if len(text) > 100: # Only include substantial content | |
content_sections.append(text) | |
# Extract navigation links for analysis | |
nav_links = [] | |
nav_elements = soup.find_all(['nav', 'header']) | |
for nav in nav_elements: | |
links = nav.find_all('a') | |
for link in links: | |
link_text = link.get_text().strip() | |
link_href = link.get('href', '') | |
if link_text and link_href: | |
nav_links.append(f"{link_text}: {link_href}") | |
# Extract and fix image URLs in the HTML | |
img_elements = soup.find_all('img') | |
for img in img_elements: | |
src = img.get('src', '') | |
if src: | |
# Handle different URL formats | |
if src.startswith('//'): | |
# Protocol-relative URL | |
absolute_src = 'https:' + src | |
img['src'] = absolute_src | |
elif src.startswith('/'): | |
# Root-relative URL | |
absolute_src = urljoin(url, src) | |
img['src'] = absolute_src | |
elif not src.startswith(('http://', 'https://')): | |
# Relative URL | |
absolute_src = urljoin(url, src) | |
img['src'] = absolute_src | |
# If it's already absolute, keep it as is | |
# Also check for data-src (lazy loading) and other common attributes | |
data_src = img.get('data-src', '') | |
if data_src and not src: | |
# Use data-src if src is empty | |
if data_src.startswith('//'): | |
absolute_data_src = 'https:' + data_src | |
img['src'] = absolute_data_src | |
elif data_src.startswith('/'): | |
absolute_data_src = urljoin(url, data_src) | |
img['src'] = absolute_data_src | |
elif not data_src.startswith(('http://', 'https://')): | |
absolute_data_src = urljoin(url, data_src) | |
img['src'] = absolute_data_src | |
else: | |
img['src'] = data_src | |
# Also fix background image URLs in style attributes | |
elements_with_style = soup.find_all(attrs={'style': True}) | |
for element in elements_with_style: | |
style_attr = element.get('style', '') | |
# Find and replace relative URLs in background-image | |
import re | |
bg_pattern = r'background-image:\s*url\(["\']?([^"\']+)["\']?\)' | |
matches = re.findall(bg_pattern, style_attr, re.IGNORECASE) | |
for match in matches: | |
if match: | |
if match.startswith('//'): | |
absolute_bg = 'https:' + match | |
style_attr = style_attr.replace(match, absolute_bg) | |
elif match.startswith('/'): | |
absolute_bg = urljoin(url, match) | |
style_attr = style_attr.replace(match, absolute_bg) | |
elif not match.startswith(('http://', 'https://')): | |
absolute_bg = urljoin(url, match) | |
style_attr = style_attr.replace(match, absolute_bg) | |
element['style'] = style_attr | |
# Fix background images in <style> tags | |
style_elements = soup.find_all('style') | |
for style in style_elements: | |
if style.string: | |
style_content = style.string | |
# Find and replace relative URLs in background-image | |
bg_pattern = r'background-image:\s*url\(["\']?([^"\']+)["\']?\)' | |
matches = re.findall(bg_pattern, style_content, re.IGNORECASE) | |
for match in matches: | |
if match: | |
if match.startswith('//'): | |
absolute_bg = 'https:' + match | |
style_content = style_content.replace(match, absolute_bg) | |
elif match.startswith('/'): | |
absolute_bg = urljoin(url, match) | |
style_content = style_content.replace(match, absolute_bg) | |
elif not match.startswith(('http://', 'https://')): | |
absolute_bg = urljoin(url, match) | |
style_content = style_content.replace(match, absolute_bg) | |
style.string = style_content | |
# Extract images for analysis (after fixing URLs) | |
images = [] | |
img_elements = soup.find_all('img') | |
for img in img_elements: | |
src = img.get('src', '') | |
alt = img.get('alt', '') | |
if src: | |
images.append({'src': src, 'alt': alt}) | |
# Debug: Print some image URLs to see what we're getting | |
print(f"Found {len(images)} images:") | |
for i, img in enumerate(images[:5]): # Show first 5 images | |
print(f" {i+1}. {img['alt'] or 'No alt'} - {img['src']}") | |
# Test a few image URLs to see if they're accessible | |
def test_image_url(img_url): | |
try: | |
test_response = requests.head(img_url, timeout=5, allow_redirects=True) | |
return test_response.status_code == 200 | |
except: | |
return False | |
# Test first few images | |
working_images = [] | |
for img in images[:10]: # Test first 10 images | |
if test_image_url(img['src']): | |
working_images.append(img) | |
else: | |
print(f" ❌ Broken image: {img['src']}") | |
print(f"Working images: {len(working_images)} out of {len(images)}") | |
# Get the modified HTML with absolute URLs | |
modified_html = str(soup) | |
# Clean and format the HTML for better readability | |
# Remove unnecessary whitespace and comments | |
import re | |
cleaned_html = re.sub(r'<!--.*?-->', '', modified_html, flags=re.DOTALL) # Remove HTML comments | |
cleaned_html = re.sub(r'\s+', ' ', cleaned_html) # Normalize whitespace | |
cleaned_html = re.sub(r'>\s+<', '><', cleaned_html) # Remove whitespace between tags | |
# Limit HTML size to avoid token limits (keep first 15000 chars) | |
if len(cleaned_html) > 15000: | |
cleaned_html = cleaned_html[:15000] + "\n<!-- ... HTML truncated for length ... -->" | |
# Check if we got any meaningful content | |
if not title_text or title_text == "No title found": | |
title_text = url.split('/')[-1] or url.split('/')[-2] or "Website" | |
# If we couldn't extract any meaningful content, provide a fallback | |
if len(cleaned_html.strip()) < 100: | |
website_content = f""" | |
WEBSITE REDESIGN - EXTRACTION FAILED | |
==================================== | |
URL: {url} | |
Title: {title_text} | |
ERROR: Could not extract meaningful HTML content from this website. This could be due to: | |
1. The website uses heavy JavaScript to load content dynamically | |
2. The website has anti-bot protection | |
3. The website requires authentication | |
4. The website is using advanced compression or encoding | |
FALLBACK APPROACH: | |
Please create a modern, responsive website design for a {title_text.lower()} website. Since I couldn't extract the original content, you can: | |
1. Create a typical layout for this type of website | |
2. Use placeholder content that would be appropriate | |
3. Include modern design elements and responsive features | |
4. Use a clean, professional design with good typography | |
5. Make it mobile-friendly and accessible | |
The website appears to be: {title_text} | |
""" | |
return website_content.strip() | |
# Compile the extracted content with the actual HTML code | |
website_content = f""" | |
WEBSITE REDESIGN - ORIGINAL HTML CODE | |
===================================== | |
URL: {url} | |
Title: {title_text} | |
Description: {description} | |
PAGE ANALYSIS: | |
- This appears to be a {title_text.lower()} website | |
- Contains {len(content_sections)} main content sections | |
- Has {len(nav_links)} navigation links | |
- Includes {len(images)} images | |
IMAGES FOUND (use these exact URLs in your redesign): | |
{chr(10).join([f"• {img['alt'] or 'Image'} - {img['src']}" for img in working_images[:20]]) if working_images else "No working images found"} | |
ALL IMAGES (including potentially broken ones): | |
{chr(10).join([f"• {img['alt'] or 'Image'} - {img['src']}" for img in images[:20]]) if images else "No images found"} | |
ORIGINAL HTML CODE (use this as the base for redesign): | |
```html | |
{cleaned_html} | |
``` | |
REDESIGN INSTRUCTIONS: | |
Please redesign this website with a modern, responsive layout while: | |
1. Preserving all the original content and structure | |
2. Maintaining the same navigation and functionality | |
3. Using the original images and their URLs (listed above) | |
4. Creating a modern, clean design with improved typography and spacing | |
5. Making it fully responsive for mobile devices | |
6. Using modern CSS frameworks and best practices | |
7. Keeping the same semantic structure but with enhanced styling | |
IMPORTANT: All image URLs in the HTML code above have been converted to absolute URLs and are ready to use. Make sure to preserve these exact image URLs in your redesigned version. | |
The HTML code above contains the complete original website structure with all images properly linked. Use it as your starting point and create a modernized version. | |
""" | |
return website_content.strip() | |
except requests.exceptions.HTTPError as e: | |
if e.response.status_code == 403: | |
return f"Error: Website blocked access (403 Forbidden). This website may have anti-bot protection. Try a different website or provide a description of what you want to build instead." | |
elif e.response.status_code == 404: | |
return f"Error: Website not found (404). Please check the URL and try again." | |
elif e.response.status_code >= 500: | |
return f"Error: Website server error ({e.response.status_code}). Please try again later." | |
else: | |
return f"Error accessing website: HTTP {e.response.status_code} - {str(e)}" | |
except requests.exceptions.Timeout: | |
return "Error: Request timed out. The website may be slow or unavailable." | |
except requests.exceptions.ConnectionError: | |
return "Error: Could not connect to the website. Please check your internet connection and the URL." | |
except requests.exceptions.RequestException as e: | |
return f"Error accessing website: {str(e)}" | |
except Exception as e: | |
return f"Error extracting website content: {str(e)}" | |
def generation_code(query: Optional[str], image: Optional[gr.Image], file: Optional[str], website_url: Optional[str], _setting: Dict[str, str], _history: Optional[History], _current_model: Dict, enable_search: bool = False): | |
if query is None: | |
query = '' | |
if _history is None: | |
_history = [] | |
# Choose system prompt based on search setting | |
system_prompt = SystemPromptWithSearch if enable_search else _setting['system'] | |
messages = history_to_messages(_history, system_prompt) | |
# Extract file text and append to query if file is present | |
file_text = "" | |
if file: | |
file_text = extract_text_from_file(file) | |
if file_text: | |
file_text = file_text[:5000] # Limit to 5000 chars for prompt size | |
query = f"{query}\n\n[Reference file content below]\n{file_text}" | |
# Extract website content and append to query if website URL is present | |
website_text = "" | |
if website_url and website_url.strip(): | |
website_text = extract_website_content(website_url.strip()) | |
if website_text and not website_text.startswith("Error"): | |
website_text = website_text[:8000] # Limit to 8000 chars for prompt size | |
query = f"{query}\n\n[Website content to redesign below]\n{website_text}" | |
elif website_text.startswith("Error"): | |
# Provide helpful guidance when website extraction fails | |
fallback_guidance = """ | |
Since I couldn't extract the website content, please provide additional details about what you'd like to build: | |
1. What type of website is this? (e.g., e-commerce, blog, portfolio, dashboard) | |
2. What are the main features you want? | |
3. What's the target audience? | |
4. Any specific design preferences? (colors, style, layout) | |
This will help me create a better design for you.""" | |
query = f"{query}\n\n[Error extracting website: {website_text}]{fallback_guidance}" | |
# Enhance query with search if enabled | |
enhanced_query = enhance_query_with_search(query, enable_search) | |
if image is not None: | |
messages.append(create_multimodal_message(enhanced_query, image)) | |
else: | |
messages.append({'role': 'user', 'content': enhanced_query}) | |
try: | |
completion = client.chat.completions.create( | |
model=_current_model["id"], | |
messages=messages, | |
stream=True, | |
max_tokens=5000 | |
) | |
content = "" | |
for chunk in completion: | |
if chunk.choices[0].delta.content: | |
content += chunk.choices[0].delta.content | |
clean_code = remove_code_block(content) | |
search_status = " (with web search)" if enable_search and tavily_client else "" | |
yield { | |
code_output: clean_code, | |
history_output: history_to_chatbot_messages(_history), | |
} | |
_history = messages_to_history(messages + [{ | |
'role': 'assistant', | |
'content': content | |
}]) | |
yield { | |
code_output: remove_code_block(content), | |
history: _history, | |
sandbox: send_to_sandbox(remove_code_block(content)), | |
history_output: history_to_chatbot_messages(_history), | |
} | |
except Exception as e: | |
error_message = f"Error: {str(e)}" | |
yield { | |
code_output: error_message, | |
history_output: history_to_chatbot_messages(_history), | |
} | |
# Main application | |
with gr.Blocks( | |
theme=gr.themes.Base( | |
primary_hue="blue", | |
secondary_hue="gray", | |
neutral_hue="gray", | |
font=gr.themes.GoogleFont("Inter"), | |
font_mono=gr.themes.GoogleFont("JetBrains Mono"), | |
text_size=gr.themes.sizes.text_md, | |
spacing_size=gr.themes.sizes.spacing_md, | |
radius_size=gr.themes.sizes.radius_md | |
), | |
title="AnyCoder - AI Code Generator" | |
) as demo: | |
history = gr.State([]) | |
setting = gr.State({ | |
"system": SystemPrompt, | |
}) | |
current_model = gr.State(AVAILABLE_MODELS[0]) | |
open_panel = gr.State(None) | |
with gr.Sidebar(): | |
gr.Markdown("# AnyCoder") | |
gr.Markdown("*AI-Powered Code Generator*") | |
gr.Markdown("---") # Separator | |
# Main input section | |
input = gr.Textbox( | |
label="What would you like to build?", | |
placeholder="Describe your application...", | |
lines=3 | |
) | |
# URL input for website redesign | |
website_url_input = gr.Textbox( | |
label="Website URL for redesign", | |
placeholder="https://example.com", | |
lines=1, | |
visible=True | |
) | |
# File upload (minimal) | |
file_input = gr.File( | |
label="Reference file", | |
file_types=[".pdf", ".txt", ".md", ".csv", ".docx", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".tif", ".gif", ".webp"], | |
visible=True | |
) | |
# Image input (only for ERNIE model) | |
image_input = gr.Image( | |
label="UI design image", | |
visible=False | |
) | |
# Action buttons | |
with gr.Row(): | |
btn = gr.Button("Generate", variant="primary", size="lg", scale=2) | |
clear_btn = gr.Button("Clear", variant="secondary", size="sm", scale=1) | |
# Search toggle (minimal) | |
search_toggle = gr.Checkbox( | |
label="🔍 Web search", | |
value=False | |
) | |
# Model selection (minimal) | |
model_dropdown = gr.Dropdown( | |
choices=[model['name'] for model in AVAILABLE_MODELS], | |
value=AVAILABLE_MODELS[0]['name'], | |
label="Model" | |
) | |
# Quick examples (minimal) | |
gr.Markdown("**Quick start**") | |
with gr.Column(): | |
for i, demo_item in enumerate(DEMO_LIST[:3]): | |
demo_card = gr.Button( | |
value=demo_item['title'], | |
variant="secondary", | |
size="sm" | |
) | |
demo_card.click( | |
fn=lambda idx=i: gr.update(value=DEMO_LIST[idx]['description']), | |
outputs=input | |
) | |
# Status indicators (minimal) | |
if not tavily_client: | |
gr.Markdown("⚠️ Web search unavailable") | |
else: | |
gr.Markdown("✅ Web search available") | |
# Hidden elements for functionality | |
model_display = gr.Markdown(f"**Model:** {AVAILABLE_MODELS[0]['name']}", visible=False) | |
def on_model_change(model_name): | |
for m in AVAILABLE_MODELS: | |
if m['name'] == model_name: | |
return m, f"**Model:** {m['name']}", update_image_input_visibility(m) | |
return AVAILABLE_MODELS[0], f"**Model:** {AVAILABLE_MODELS[0]['name']}", update_image_input_visibility(AVAILABLE_MODELS[0]) | |
def save_prompt(input): | |
return {setting: {"system": input}} | |
model_dropdown.change( | |
on_model_change, | |
inputs=model_dropdown, | |
outputs=[current_model, model_display, image_input] | |
) | |
# System prompt (collapsed by default) | |
with gr.Accordion("Advanced", open=False): | |
systemPromptInput = gr.Textbox( | |
value=SystemPrompt, | |
label="System prompt", | |
lines=5 | |
) | |
save_prompt_btn = gr.Button("Save", variant="primary", size="sm") | |
save_prompt_btn.click(save_prompt, inputs=systemPromptInput, outputs=setting) | |
with gr.Column(): | |
with gr.Tabs(): | |
with gr.Tab("Code"): | |
code_output = gr.Code( | |
language="html", | |
lines=25, | |
interactive=False, | |
label="Generated code" | |
) | |
with gr.Tab("Preview"): | |
sandbox = gr.HTML(label="Live preview") | |
with gr.Tab("History"): | |
history_output = gr.Chatbot(show_label=False, height=400, type="messages") | |
# Event handlers | |
btn.click( | |
generation_code, | |
inputs=[input, image_input, file_input, website_url_input, setting, history, current_model, search_toggle], | |
outputs=[code_output, history, sandbox, history_output] | |
) | |
clear_btn.click(clear_history, outputs=[history, history_output, file_input, website_url_input]) | |
if __name__ == "__main__": | |
demo.queue(default_concurrency_limit=20).launch(ssr_mode=True, mcp_server=True) |