Spaces:
Running
Running
import os | |
import re | |
from http import HTTPStatus | |
from typing import Dict, List, Optional, Tuple | |
import base64 | |
import mimetypes | |
import PyPDF2 | |
import docx | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from tavily import TavilyClient | |
# Configuration | |
SystemPrompt = """You are a helpful coding assistant. You help users create applications by generating code based on their requirements. | |
When asked to create an application, you should: | |
1. Understand the user's requirements | |
2. Generate clean, working code | |
3. Provide HTML output when appropriate for web applications | |
4. Include necessary comments and documentation | |
5. Ensure the code is functional and follows best practices | |
If an image is provided, analyze it and use the visual information to better understand the user's requirements. | |
Always respond with code that can be executed or rendered directly. | |
Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text.""" | |
# System prompt with search capability | |
SystemPromptWithSearch = """You are a helpful coding assistant with access to real-time web search. You help users create applications by generating code based on their requirements. | |
When asked to create an application, you should: | |
1. Understand the user's requirements | |
2. Use web search when needed to find the latest information, best practices, or specific technologies | |
3. Generate clean, working code | |
4. Provide HTML output when appropriate for web applications | |
5. Include necessary comments and documentation | |
6. Ensure the code is functional and follows best practices | |
If an image is provided, analyze it and use the visual information to better understand the user's requirements. | |
Always respond with code that can be executed or rendered directly. | |
Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text.""" | |
# Available models | |
AVAILABLE_MODELS = [ | |
{ | |
"name": "DeepSeek V3", | |
"id": "deepseek-ai/DeepSeek-V3-0324", | |
"description": "DeepSeek V3 model for code generation" | |
}, | |
{ | |
"name": "DeepSeek R1", | |
"id": "deepseek-ai/DeepSeek-R1-0528", | |
"description": "DeepSeek R1 model for code generation" | |
}, | |
{ | |
"name": "ERNIE-4.5-VL", | |
"id": "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT", | |
"description": "ERNIE-4.5-VL model for multimodal code generation with image support" | |
}, | |
{ | |
"name": "MiniMax M1", | |
"id": "MiniMaxAI/MiniMax-M1-80k", | |
"description": "MiniMax M1 model for code generation and general tasks" | |
}, | |
{ | |
"name": "Qwen3-235B-A22B", | |
"id": "Qwen/Qwen3-235B-A22B", | |
"description": "Qwen3-235B-A22B model for code generation and general tasks" | |
}, | |
{ | |
"name": "SmolLM3-3B", | |
"id": "HuggingFaceTB/SmolLM3-3B", | |
"description": "SmolLM3-3B model for code generation and general tasks" | |
} | |
] | |
DEMO_LIST = [ | |
{ | |
"title": "Todo App", | |
"description": "Create a simple todo application with add, delete, and mark as complete functionality" | |
}, | |
{ | |
"title": "Calculator", | |
"description": "Build a basic calculator with addition, subtraction, multiplication, and division" | |
}, | |
{ | |
"title": "Weather Dashboard", | |
"description": "Create a weather dashboard that displays current weather information" | |
}, | |
{ | |
"title": "Chat Interface", | |
"description": "Build a chat interface with message history and user input" | |
}, | |
{ | |
"title": "E-commerce Product Card", | |
"description": "Create a product card component for an e-commerce website" | |
}, | |
{ | |
"title": "Login Form", | |
"description": "Build a responsive login form with validation" | |
}, | |
{ | |
"title": "Dashboard Layout", | |
"description": "Create a dashboard layout with sidebar navigation and main content area" | |
}, | |
{ | |
"title": "Data Table", | |
"description": "Build a data table with sorting and filtering capabilities" | |
}, | |
{ | |
"title": "Image Gallery", | |
"description": "Create an image gallery with lightbox functionality and responsive grid layout" | |
}, | |
{ | |
"title": "UI from Image", | |
"description": "Upload an image of a UI design and I'll generate the HTML/CSS code for it" | |
} | |
] | |
# HF Inference Client | |
YOUR_API_TOKEN = os.getenv('HF_TOKEN') | |
client = InferenceClient( | |
provider="auto", | |
api_key=YOUR_API_TOKEN, | |
bill_to="huggingface" | |
) | |
# Tavily Search Client | |
TAVILY_API_KEY = os.getenv('TAVILY_API_KEY') | |
tavily_client = None | |
if TAVILY_API_KEY: | |
try: | |
tavily_client = TavilyClient(api_key=TAVILY_API_KEY) | |
except Exception as e: | |
print(f"Failed to initialize Tavily client: {e}") | |
tavily_client = None | |
History = List[Tuple[str, str]] | |
Messages = List[Dict[str, str]] | |
def history_to_messages(history: History, system: str) -> Messages: | |
messages = [{'role': 'system', 'content': system}] | |
for h in history: | |
# Handle multimodal content in history | |
user_content = h[0] | |
if isinstance(user_content, list): | |
# Extract text from multimodal content | |
text_content = "" | |
for item in user_content: | |
if isinstance(item, dict) and item.get("type") == "text": | |
text_content += item.get("text", "") | |
user_content = text_content if text_content else str(user_content) | |
messages.append({'role': 'user', 'content': user_content}) | |
messages.append({'role': 'assistant', 'content': h[1]}) | |
return messages | |
def messages_to_history(messages: Messages) -> Tuple[str, History]: | |
assert messages[0]['role'] == 'system' | |
history = [] | |
for q, r in zip(messages[1::2], messages[2::2]): | |
# Extract text content from multimodal messages for history | |
user_content = q['content'] | |
if isinstance(user_content, list): | |
text_content = "" | |
for item in user_content: | |
if isinstance(item, dict) and item.get("type") == "text": | |
text_content += item.get("text", "") | |
user_content = text_content if text_content else str(user_content) | |
history.append([user_content, r['content']]) | |
return history | |
def history_to_chatbot_messages(history: History) -> List[Dict[str, str]]: | |
"""Convert history tuples to chatbot message format""" | |
messages = [] | |
for user_msg, assistant_msg in history: | |
# Handle multimodal content | |
if isinstance(user_msg, list): | |
text_content = "" | |
for item in user_msg: | |
if isinstance(item, dict) and item.get("type") == "text": | |
text_content += item.get("text", "") | |
user_msg = text_content if text_content else str(user_msg) | |
messages.append({"role": "user", "content": user_msg}) | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
return messages | |
def remove_code_block(text): | |
# Try to match code blocks with language markers | |
patterns = [ | |
r'```(?:html|HTML)\n([\s\S]+?)\n```', # Match ```html or ```HTML | |
r'```\n([\s\S]+?)\n```', # Match code blocks without language markers | |
r'```([\s\S]+?)```' # Match code blocks without line breaks | |
] | |
for pattern in patterns: | |
match = re.search(pattern, text, re.DOTALL) | |
if match: | |
extracted = match.group(1).strip() | |
return extracted | |
# If no code block is found, check if the entire text is HTML | |
if text.strip().startswith('<!DOCTYPE html>') or text.strip().startswith('<html') or text.strip().startswith('<'): | |
return text.strip() | |
return text.strip() | |
def history_render(history: History): | |
return gr.update(visible=True), history | |
def clear_history(): | |
return [], [] # Empty lists for both tuple format and chatbot messages | |
def update_image_input_visibility(model): | |
"""Update image input visibility based on selected model""" | |
is_ernie_vl = model.get("id") == "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT" | |
return gr.update(visible=is_ernie_vl) | |
def process_image_for_model(image): | |
"""Convert image to base64 for model input""" | |
if image is None: | |
return None | |
# Convert numpy array to PIL Image if needed | |
import io | |
import base64 | |
import numpy as np | |
from PIL import Image | |
# Handle numpy array from Gradio | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
buffer = io.BytesIO() | |
image.save(buffer, format='PNG') | |
img_str = base64.b64encode(buffer.getvalue()).decode() | |
return f"data:image/png;base64,{img_str}" | |
def create_multimodal_message(text, image=None): | |
"""Create a multimodal message with text and optional image""" | |
if image is None: | |
return {"role": "user", "content": text} | |
content = [ | |
{ | |
"type": "text", | |
"text": text | |
}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": process_image_for_model(image) | |
} | |
} | |
] | |
return {"role": "user", "content": content} | |
# Updated for faster Tavily search and closer prompt usage | |
# Uses 'advanced' search_depth and auto_parameters=True for speed and relevance | |
def perform_web_search(query: str, max_results: int = 5, include_domains=None, exclude_domains=None) -> str: | |
"""Perform web search using Tavily with default parameters""" | |
if not tavily_client: | |
return "Web search is not available. Please set the TAVILY_API_KEY environment variable." | |
try: | |
# Use Tavily defaults with advanced search depth for better results | |
search_params = { | |
"search_depth": "advanced", | |
"max_results": min(max(1, max_results), 20) | |
} | |
if include_domains is not None: | |
search_params["include_domains"] = include_domains | |
if exclude_domains is not None: | |
search_params["exclude_domains"] = exclude_domains | |
response = tavily_client.search(query, **search_params) | |
search_results = [] | |
for result in response.get('results', []): | |
title = result.get('title', 'No title') | |
url = result.get('url', 'No URL') | |
content = result.get('content', 'No content') | |
search_results.append(f"Title: {title}\nURL: {url}\nContent: {content}\n") | |
if search_results: | |
return "Web Search Results:\n\n" + "\n---\n".join(search_results) | |
else: | |
return "No search results found." | |
except Exception as e: | |
return f"Search error: {str(e)}" | |
def enhance_query_with_search(query: str, enable_search: bool) -> str: | |
"""Enhance the query with web search results if search is enabled""" | |
if not enable_search or not tavily_client: | |
return query | |
# Perform search to get relevant information | |
search_results = perform_web_search(query) | |
# Combine original query with search results | |
enhanced_query = f"""Original Query: {query} | |
{search_results} | |
Please use the search results above to help create the requested application with the most up-to-date information and best practices.""" | |
return enhanced_query | |
def send_to_sandbox(code): | |
# Add a wrapper to inject necessary permissions and ensure full HTML | |
wrapped_code = f""" | |
<!DOCTYPE html> | |
<html> | |
<head> | |
<meta charset=\"UTF-8\"> | |
<meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\"> | |
<script> | |
// Safe localStorage polyfill | |
const safeStorage = {{ | |
_data: {{}}, | |
getItem: function(key) {{ return this._data[key] || null; }}, | |
setItem: function(key, value) {{ this._data[key] = value; }}, | |
removeItem: function(key) {{ delete this._data[key]; }}, | |
clear: function() {{ this._data = {{}}; }} | |
}}; | |
Object.defineProperty(window, 'localStorage', {{ | |
value: safeStorage, | |
writable: false | |
}}); | |
window.onerror = function(message, source, lineno, colno, error) {{ | |
console.error('Error:', message); | |
}}; | |
</script> | |
</head> | |
<body> | |
{code} | |
</body> | |
</html> | |
""" | |
encoded_html = base64.b64encode(wrapped_code.encode('utf-8')).decode('utf-8') | |
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}" | |
iframe = f'<iframe src="{data_uri}" width="100%" height="920px" sandbox="allow-scripts allow-same-origin allow-forms allow-popups allow-modals allow-presentation" allow="display-capture"></iframe>' | |
return iframe | |
def demo_card_click(e: gr.EventData): | |
try: | |
# Get the index from the event data | |
if hasattr(e, '_data') and e._data: | |
# Try different ways to get the index | |
if 'index' in e._data: | |
index = e._data['index'] | |
elif 'component' in e._data and 'index' in e._data['component']: | |
index = e._data['component']['index'] | |
elif 'target' in e._data and 'index' in e._data['target']: | |
index = e._data['target']['index'] | |
else: | |
# If we can't get the index, try to extract it from the card data | |
index = 0 | |
else: | |
index = 0 | |
# Ensure index is within bounds | |
if index >= len(DEMO_LIST): | |
index = 0 | |
return DEMO_LIST[index]['description'] | |
except (KeyError, IndexError, AttributeError) as e: | |
# Return the first demo description as fallback | |
return DEMO_LIST[0]['description'] | |
def extract_text_from_file(file_path): | |
if not file_path: | |
return "" | |
mime, _ = mimetypes.guess_type(file_path) | |
ext = os.path.splitext(file_path)[1].lower() | |
try: | |
if ext == ".pdf": | |
with open(file_path, "rb") as f: | |
reader = PyPDF2.PdfReader(f) | |
return "\n".join(page.extract_text() or "" for page in reader.pages) | |
elif ext in [".txt", ".md"]: | |
with open(file_path, "r", encoding="utf-8") as f: | |
return f.read() | |
elif ext == ".csv": | |
with open(file_path, "r", encoding="utf-8") as f: | |
return f.read() | |
elif ext == ".docx": | |
doc = docx.Document(file_path) | |
return "\n".join([para.text for para in doc.paragraphs]) | |
else: | |
return "" | |
except Exception as e: | |
return f"Error extracting text: {e}" | |
def generation_code(query: Optional[str], image: Optional[gr.Image], file: Optional[str], _setting: Dict[str, str], _history: Optional[History], _current_model: Dict, enable_search: bool = False): | |
if query is None: | |
query = '' | |
if _history is None: | |
_history = [] | |
# Choose system prompt based on search setting | |
system_prompt = SystemPromptWithSearch if enable_search else _setting['system'] | |
messages = history_to_messages(_history, system_prompt) | |
# Extract file text and append to query if file is present | |
file_text = "" | |
if file: | |
file_text = extract_text_from_file(file) | |
if file_text: | |
file_text = file_text[:5000] # Limit to 5000 chars for prompt size | |
query = f"{query}\n\n[Reference file content below]\n{file_text}" | |
# Enhance query with search if enabled | |
enhanced_query = enhance_query_with_search(query, enable_search) | |
if image is not None: | |
messages.append(create_multimodal_message(enhanced_query, image)) | |
else: | |
messages.append({'role': 'user', 'content': enhanced_query}) | |
try: | |
completion = client.chat.completions.create( | |
model=_current_model["id"], | |
messages=messages, | |
stream=True, | |
max_tokens=5000 | |
) | |
content = "" | |
for chunk in completion: | |
if chunk.choices[0].delta.content: | |
content += chunk.choices[0].delta.content | |
clean_code = remove_code_block(content) | |
search_status = " (with web search)" if enable_search and tavily_client else "" | |
yield { | |
code_output: clean_code, | |
status_indicator: f'<div class="status-indicator generating" id="status">Generating code{search_status}...</div>', | |
history_output: history_to_chatbot_messages(_history), | |
} | |
_history = messages_to_history(messages + [{ | |
'role': 'assistant', | |
'content': content | |
}]) | |
yield { | |
code_output: remove_code_block(content), | |
history: _history, | |
sandbox: send_to_sandbox(remove_code_block(content)), | |
status_indicator: '<div class="status-indicator success" id="status">Code generated successfully!</div>', | |
history_output: history_to_chatbot_messages(_history), | |
} | |
except Exception as e: | |
error_message = f"Error: {str(e)}" | |
yield { | |
code_output: error_message, | |
status_indicator: '<div class="status-indicator error" id="status">Error generating code</div>', | |
history_output: history_to_chatbot_messages(_history), | |
} | |
# Main application | |
with gr.Blocks(theme=gr.themes.Base(), title="AnyCoder - AI Code Generator") as demo: | |
history = gr.State([]) | |
setting = gr.State({ | |
"system": SystemPrompt, | |
}) | |
current_model = gr.State(AVAILABLE_MODELS[0]) | |
open_panel = gr.State(None) | |
with gr.Sidebar(): | |
gr.Markdown("# AnyCoder\nAI-Powered Code Generator") | |
gr.Markdown("""Describe your app or UI in plain English. Optionally upload a UI image (for ERNIE model). Click Generate to get code and preview.""") | |
gr.Markdown("**Tip:** For best search results about people or entities, include details like profession, company, or location. Example: 'John Smith software engineer at Google.'") | |
gr.Markdown("**Tip:** You can attach a file (PDF, TXT, DOCX, CSV, MD) to use as reference for your prompt, e.g. 'Summarize this PDF.'") | |
input = gr.Textbox( | |
label="Describe your application", | |
placeholder="e.g., Create a todo app with add, delete, and mark as complete functionality", | |
lines=2 | |
) | |
image_input = gr.Image( | |
label="Upload UI design image (ERNIE-4.5-VL only)", | |
visible=False | |
) | |
file_input = gr.File( | |
label="Attach a file (PDF, TXT, DOCX, CSV, MD)", | |
file_types=[".pdf", ".txt", ".md", ".csv", ".docx"], | |
visible=True | |
) | |
with gr.Row(): | |
btn = gr.Button("Generate", variant="primary", size="sm") | |
clear_btn = gr.Button("Clear", variant="secondary", size="sm") | |
# Search toggle | |
search_toggle = gr.Checkbox( | |
label="🔍 Enable Web Search", | |
value=False, | |
info="Enable real-time web search to get the latest information and best practices" | |
) | |
# Search status indicator | |
if not tavily_client: | |
gr.Markdown("⚠️ **Web Search Unavailable**: Set `TAVILY_API_KEY` environment variable to enable search") | |
else: | |
gr.Markdown("✅ **Web Search Available**: Toggle above to enable real-time search") | |
gr.Markdown("### Quick Examples") | |
for i, demo_item in enumerate(DEMO_LIST[:5]): | |
demo_card = gr.Button( | |
value=demo_item['title'], | |
variant="secondary", | |
size="sm" | |
) | |
demo_card.click( | |
fn=lambda idx=i: gr.update(value=DEMO_LIST[idx]['description']), | |
outputs=input | |
) | |
gr.Markdown("---") | |
model_dropdown = gr.Dropdown( | |
choices=[model['name'] for model in AVAILABLE_MODELS], | |
value=AVAILABLE_MODELS[0]['name'], | |
label="Select Model" | |
) | |
def on_model_change(model_name): | |
for m in AVAILABLE_MODELS: | |
if m['name'] == model_name: | |
return m, f"**Model:** {m['name']}", update_image_input_visibility(m) | |
return AVAILABLE_MODELS[0], f"**Model:** {AVAILABLE_MODELS[0]['name']}", update_image_input_visibility(AVAILABLE_MODELS[0]) | |
model_display = gr.Markdown(f"**Model:** {AVAILABLE_MODELS[0]['name']}") | |
model_dropdown.change( | |
on_model_change, | |
inputs=model_dropdown, | |
outputs=[current_model, model_display, image_input] | |
) | |
with gr.Accordion("System Prompt", open=False): | |
systemPromptInput = gr.Textbox( | |
value=SystemPrompt, | |
label="System Prompt", | |
lines=10 | |
) | |
save_prompt_btn = gr.Button("Save", variant="primary") | |
def save_prompt(input): | |
return {setting: {"system": input}} | |
save_prompt_btn.click(save_prompt, inputs=systemPromptInput, outputs=setting) | |
with gr.Column(): | |
model_display | |
with gr.Tabs(): | |
with gr.Tab("Code Editor"): | |
code_output = gr.Code( | |
language="html", | |
lines=25, | |
interactive=False, | |
label="Generated Code" | |
) | |
with gr.Tab("Live Preview"): | |
sandbox = gr.HTML(label="Live Preview") | |
with gr.Tab("History"): | |
history_output = gr.Chatbot(show_label=False, height=400, type="messages") | |
status_indicator = gr.Markdown( | |
'Ready to generate code', | |
) | |
# Event handlers | |
btn.click( | |
generation_code, | |
inputs=[input, image_input, file_input, setting, history, current_model, search_toggle], | |
outputs=[code_output, history, sandbox, status_indicator, history_output] | |
) | |
clear_btn.click(clear_history, outputs=[history, history_output, file_input]) | |
if __name__ == "__main__": | |
demo.queue(default_concurrency_limit=20).launch(ssr_mode=True, mcp_server=True) |