File size: 22,176 Bytes
082d9d1
 
 
 
 
ac157c8
 
 
f695033
567736c
082d9d1
78fc423
082d9d1
 
 
 
 
 
 
 
 
 
e287280
 
082d9d1
 
 
 
78fc423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d142097
 
 
 
 
 
 
 
 
 
 
e287280
 
 
 
 
f4191a0
 
 
 
 
d347f16
 
 
 
 
d142097
 
 
082d9d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e287280
 
 
 
 
 
 
 
082d9d1
 
 
 
d142097
082d9d1
dc2cb0c
082d9d1
 
 
 
78fc423
 
 
 
 
 
 
 
 
 
082d9d1
 
 
 
 
 
e287280
 
 
 
 
 
 
 
 
 
 
082d9d1
 
 
 
 
 
 
e287280
 
 
 
 
 
 
 
 
 
082d9d1
 
78fc423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
082d9d1
 
 
 
 
 
 
 
 
 
 
 
 
e0eaf95
082d9d1
 
 
 
e0eaf95
082d9d1
 
78fc423
082d9d1
f38f0e9
 
 
 
 
e287280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78fc423
87df3aa
78fc423
 
f9931c4
78fc423
 
 
 
f9931c4
78fc423
87df3aa
f9931c4
78fc423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9931c4
78fc423
f9931c4
78fc423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
082d9d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60cb489
 
 
 
 
 
 
 
 
 
 
 
082d9d1
 
60cb489
 
 
 
 
082d9d1
60cb489
082d9d1
 
 
ac157c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0eaf95
 
 
 
78fc423
 
 
 
 
ac157c8
 
 
 
 
 
 
 
78fc423
 
 
e0eaf95
78fc423
e0eaf95
78fc423
e0eaf95
 
 
 
 
 
 
 
 
 
 
 
78fc423
e0eaf95
 
78fc423
 
e0eaf95
 
 
 
 
 
 
 
 
 
78fc423
e0eaf95
 
 
 
 
 
78fc423
e0eaf95
 
082d9d1
9dfa063
082d9d1
 
 
 
e0eaf95
 
 
9dfa063
 
 
78fc423
ac157c8
9dfa063
 
 
 
 
 
 
 
 
ac157c8
 
 
 
 
9dfa063
 
 
78fc423
 
 
 
 
 
 
 
 
 
 
 
 
 
9dfa063
 
 
 
 
 
e0eaf95
9dfa063
 
 
e0eaf95
9dfa063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbf5e27
9dfa063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78fc423
9dfa063
 
 
a7d7982
e0eaf95
 
 
ac157c8
29e6ed7
e0eaf95
ac157c8
c7dcb04
0a632f8
79fe2ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import os
import re
from http import HTTPStatus
from typing import Dict, List, Optional, Tuple
import base64
import mimetypes
import PyPDF2
import docx

import gradio as gr
from huggingface_hub import InferenceClient
from tavily import TavilyClient

# Configuration
SystemPrompt = """You are a helpful coding assistant. You help users create applications by generating code based on their requirements. 
When asked to create an application, you should:
1. Understand the user's requirements
2. Generate clean, working code
3. Provide HTML output when appropriate for web applications
4. Include necessary comments and documentation
5. Ensure the code is functional and follows best practices

If an image is provided, analyze it and use the visual information to better understand the user's requirements.

Always respond with code that can be executed or rendered directly.

Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text."""

# System prompt with search capability
SystemPromptWithSearch = """You are a helpful coding assistant with access to real-time web search. You help users create applications by generating code based on their requirements. 
When asked to create an application, you should:
1. Understand the user's requirements
2. Use web search when needed to find the latest information, best practices, or specific technologies
3. Generate clean, working code
4. Provide HTML output when appropriate for web applications
5. Include necessary comments and documentation
6. Ensure the code is functional and follows best practices

If an image is provided, analyze it and use the visual information to better understand the user's requirements.

Always respond with code that can be executed or rendered directly.

Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text."""

# Available models
AVAILABLE_MODELS = [
    {
        "name": "DeepSeek V3",
        "id": "deepseek-ai/DeepSeek-V3-0324",
        "description": "DeepSeek V3 model for code generation"
    },
    {
        "name": "DeepSeek R1", 
        "id": "deepseek-ai/DeepSeek-R1-0528",
        "description": "DeepSeek R1 model for code generation"
    },
    {
        "name": "ERNIE-4.5-VL",
        "id": "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT",
        "description": "ERNIE-4.5-VL model for multimodal code generation with image support"
    },
    {
        "name": "MiniMax M1",
        "id": "MiniMaxAI/MiniMax-M1-80k",
        "description": "MiniMax M1 model for code generation and general tasks"
    },
    {
        "name": "Qwen3-235B-A22B",
        "id": "Qwen/Qwen3-235B-A22B",
        "description": "Qwen3-235B-A22B model for code generation and general tasks"
    }
]

DEMO_LIST = [
    {
        "title": "Todo App",
        "description": "Create a simple todo application with add, delete, and mark as complete functionality"
    },
    {
        "title": "Calculator",
        "description": "Build a basic calculator with addition, subtraction, multiplication, and division"
    },
    {
        "title": "Weather Dashboard",
        "description": "Create a weather dashboard that displays current weather information"
    },
    {
        "title": "Chat Interface",
        "description": "Build a chat interface with message history and user input"
    },
    {
        "title": "E-commerce Product Card",
        "description": "Create a product card component for an e-commerce website"
    },
    {
        "title": "Login Form",
        "description": "Build a responsive login form with validation"
    },
    {
        "title": "Dashboard Layout",
        "description": "Create a dashboard layout with sidebar navigation and main content area"
    },
    {
        "title": "Data Table",
        "description": "Build a data table with sorting and filtering capabilities"
    },
    {
        "title": "Image Gallery",
        "description": "Create an image gallery with lightbox functionality and responsive grid layout"
    },
    {
        "title": "UI from Image",
        "description": "Upload an image of a UI design and I'll generate the HTML/CSS code for it"
    }
]

# HF Inference Client
YOUR_API_TOKEN = os.getenv('HF_TOKEN')
client = InferenceClient(
    provider="auto",
    api_key=YOUR_API_TOKEN,
    bill_to="huggingface"
)

# Tavily Search Client
TAVILY_API_KEY = os.getenv('TAVILY_API_KEY')
tavily_client = None
if TAVILY_API_KEY:
    try:
        tavily_client = TavilyClient(api_key=TAVILY_API_KEY)
    except Exception as e:
        print(f"Failed to initialize Tavily client: {e}")
        tavily_client = None

History = List[Tuple[str, str]]
Messages = List[Dict[str, str]]

def history_to_messages(history: History, system: str) -> Messages:
    messages = [{'role': 'system', 'content': system}]
    for h in history:
        # Handle multimodal content in history
        user_content = h[0]
        if isinstance(user_content, list):
            # Extract text from multimodal content
            text_content = ""
            for item in user_content:
                if isinstance(item, dict) and item.get("type") == "text":
                    text_content += item.get("text", "")
            user_content = text_content if text_content else str(user_content)
        
        messages.append({'role': 'user', 'content': user_content})
        messages.append({'role': 'assistant', 'content': h[1]})
    return messages

def messages_to_history(messages: Messages) -> Tuple[str, History]:
    assert messages[0]['role'] == 'system'
    history = []
    for q, r in zip(messages[1::2], messages[2::2]):
        # Extract text content from multimodal messages for history
        user_content = q['content']
        if isinstance(user_content, list):
            text_content = ""
            for item in user_content:
                if isinstance(item, dict) and item.get("type") == "text":
                    text_content += item.get("text", "")
            user_content = text_content if text_content else str(user_content)
        
        history.append([user_content, r['content']])
    return history

def history_to_chatbot_messages(history: History) -> List[Dict[str, str]]:
    """Convert history tuples to chatbot message format"""
    messages = []
    for user_msg, assistant_msg in history:
        # Handle multimodal content
        if isinstance(user_msg, list):
            text_content = ""
            for item in user_msg:
                if isinstance(item, dict) and item.get("type") == "text":
                    text_content += item.get("text", "")
            user_msg = text_content if text_content else str(user_msg)
        
        messages.append({"role": "user", "content": user_msg})
        messages.append({"role": "assistant", "content": assistant_msg})
    return messages

def remove_code_block(text):
    # Try to match code blocks with language markers
    patterns = [
        r'```(?:html|HTML)\n([\s\S]+?)\n```',  # Match ```html or ```HTML
        r'```\n([\s\S]+?)\n```',               # Match code blocks without language markers
        r'```([\s\S]+?)```'                      # Match code blocks without line breaks
    ]
    for pattern in patterns:
        match = re.search(pattern, text, re.DOTALL)
        if match:
            extracted = match.group(1).strip()
            return extracted
    # If no code block is found, check if the entire text is HTML
    if text.strip().startswith('<!DOCTYPE html>') or text.strip().startswith('<html') or text.strip().startswith('<'):
        return text.strip()
    return text.strip()

def history_render(history: History):
    return gr.update(visible=True), history

def clear_history():
    return [], []  # Empty lists for both tuple format and chatbot messages

def update_image_input_visibility(model):
    """Update image input visibility based on selected model"""
    is_ernie_vl = model.get("id") == "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT"
    return gr.update(visible=is_ernie_vl)

def process_image_for_model(image):
    """Convert image to base64 for model input"""
    if image is None:
        return None
    
    # Convert numpy array to PIL Image if needed
    import io
    import base64
    import numpy as np
    from PIL import Image
    
    # Handle numpy array from Gradio
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    
    buffer = io.BytesIO()
    image.save(buffer, format='PNG')
    img_str = base64.b64encode(buffer.getvalue()).decode()
    return f"data:image/png;base64,{img_str}"

def create_multimodal_message(text, image=None):
    """Create a multimodal message with text and optional image"""
    if image is None:
        return {"role": "user", "content": text}
    
    content = [
        {
            "type": "text",
            "text": text
        },
        {
            "type": "image_url",
            "image_url": {
                "url": process_image_for_model(image)
            }
        }
    ]
    
    return {"role": "user", "content": content}

# Updated for faster Tavily search and closer prompt usage
# Uses 'advanced' search_depth and auto_parameters=True for speed and relevance

def perform_web_search(query: str, max_results: int = 5, include_domains=None, exclude_domains=None) -> str:
    """Perform web search using Tavily with default parameters"""
    if not tavily_client:
        return "Web search is not available. Please set the TAVILY_API_KEY environment variable."
    
    try:
        # Use Tavily defaults with advanced search depth for better results
        search_params = {
            "search_depth": "advanced",
            "max_results": min(max(1, max_results), 20)
        }
        if include_domains is not None:
            search_params["include_domains"] = include_domains
        if exclude_domains is not None:
            search_params["exclude_domains"] = exclude_domains

        response = tavily_client.search(query, **search_params)
        
        search_results = []
        for result in response.get('results', []):
            title = result.get('title', 'No title')
            url = result.get('url', 'No URL')
            content = result.get('content', 'No content')
            search_results.append(f"Title: {title}\nURL: {url}\nContent: {content}\n")
        
        if search_results:
            return "Web Search Results:\n\n" + "\n---\n".join(search_results)
        else:
            return "No search results found."
            
    except Exception as e:
        return f"Search error: {str(e)}"

def enhance_query_with_search(query: str, enable_search: bool) -> str:
    """Enhance the query with web search results if search is enabled"""
    if not enable_search or not tavily_client:
        return query
    
    # Perform search to get relevant information
    search_results = perform_web_search(query)
    
    # Combine original query with search results
    enhanced_query = f"""Original Query: {query}

{search_results}

Please use the search results above to help create the requested application with the most up-to-date information and best practices."""
    
    return enhanced_query

def send_to_sandbox(code):
    # Add a wrapper to inject necessary permissions and ensure full HTML
    wrapped_code = f"""
    <!DOCTYPE html>
    <html>
    <head>
        <meta charset=\"UTF-8\">
        <meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\">
        <script>
            // Safe localStorage polyfill
            const safeStorage = {{
                _data: {{}},
                getItem: function(key) {{ return this._data[key] || null; }},
                setItem: function(key, value) {{ this._data[key] = value; }},
                removeItem: function(key) {{ delete this._data[key]; }},
                clear: function() {{ this._data = {{}}; }}
            }};
            Object.defineProperty(window, 'localStorage', {{
                value: safeStorage,
                writable: false
            }});
            window.onerror = function(message, source, lineno, colno, error) {{
                console.error('Error:', message);
            }};
        </script>
    </head>
    <body>
        {code}
    </body>
    </html>
    """
    encoded_html = base64.b64encode(wrapped_code.encode('utf-8')).decode('utf-8')
    data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
    iframe = f'<iframe src="{data_uri}" width="100%" height="920px" sandbox="allow-scripts allow-same-origin allow-forms allow-popups allow-modals allow-presentation" allow="display-capture"></iframe>'
    return iframe

def demo_card_click(e: gr.EventData):
    try:
        # Get the index from the event data
        if hasattr(e, '_data') and e._data:
            # Try different ways to get the index
            if 'index' in e._data:
                index = e._data['index']
            elif 'component' in e._data and 'index' in e._data['component']:
                index = e._data['component']['index']
            elif 'target' in e._data and 'index' in e._data['target']:
                index = e._data['target']['index']
            else:
                # If we can't get the index, try to extract it from the card data
                index = 0
        else:
            index = 0
        
        # Ensure index is within bounds
        if index >= len(DEMO_LIST):
            index = 0
            
        return DEMO_LIST[index]['description']
    except (KeyError, IndexError, AttributeError) as e:
        # Return the first demo description as fallback
        return DEMO_LIST[0]['description']

def extract_text_from_file(file_path):
    if not file_path:
        return ""
    mime, _ = mimetypes.guess_type(file_path)
    ext = os.path.splitext(file_path)[1].lower()
    try:
        if ext == ".pdf":
            with open(file_path, "rb") as f:
                reader = PyPDF2.PdfReader(f)
                return "\n".join(page.extract_text() or "" for page in reader.pages)
        elif ext in [".txt", ".md"]:
            with open(file_path, "r", encoding="utf-8") as f:
                return f.read()
        elif ext == ".csv":
            with open(file_path, "r", encoding="utf-8") as f:
                return f.read()
        elif ext == ".docx":
            doc = docx.Document(file_path)
            return "\n".join([para.text for para in doc.paragraphs])
        else:
            return ""
    except Exception as e:
        return f"Error extracting text: {e}"

def generation_code(query: Optional[str], image: Optional[gr.Image], file: Optional[str], _setting: Dict[str, str], _history: Optional[History], _current_model: Dict, enable_search: bool = False):
    if query is None:
        query = ''
    if _history is None:
        _history = []
    
    # Choose system prompt based on search setting
    system_prompt = SystemPromptWithSearch if enable_search else _setting['system']
    messages = history_to_messages(_history, system_prompt)
    
    # Extract file text and append to query if file is present
    file_text = ""
    if file:
        file_text = extract_text_from_file(file)
        if file_text:
            file_text = file_text[:5000]  # Limit to 5000 chars for prompt size
            query = f"{query}\n\n[Reference file content below]\n{file_text}"
    
    # Enhance query with search if enabled
    enhanced_query = enhance_query_with_search(query, enable_search)
    
    if image is not None:
        messages.append(create_multimodal_message(enhanced_query, image))
    else:
        messages.append({'role': 'user', 'content': enhanced_query})
    try:
        completion = client.chat.completions.create(
            model=_current_model["id"],
            messages=messages,
            stream=True,
            max_tokens=5000
        )
        content = ""
        for chunk in completion:
            if chunk.choices[0].delta.content:
                content += chunk.choices[0].delta.content
                clean_code = remove_code_block(content)
                search_status = " (with web search)" if enable_search and tavily_client else ""
                yield {
                    code_output: clean_code,
                    status_indicator: f'<div class="status-indicator generating" id="status">Generating code{search_status}...</div>',
                    history_output: history_to_chatbot_messages(_history),
                }
        _history = messages_to_history(messages + [{
            'role': 'assistant',
            'content': content
        }])
        yield {
            code_output: remove_code_block(content),
            history: _history,
            sandbox: send_to_sandbox(remove_code_block(content)),
            status_indicator: '<div class="status-indicator success" id="status">Code generated successfully!</div>',
            history_output: history_to_chatbot_messages(_history),
        }
    except Exception as e:
        error_message = f"Error: {str(e)}"
        yield {
            code_output: error_message,
            status_indicator: '<div class="status-indicator error" id="status">Error generating code</div>',
            history_output: history_to_chatbot_messages(_history),
        }

# Main application
with gr.Blocks(theme=gr.themes.Base(), title="AnyCoder - AI Code Generator") as demo:
    history = gr.State([])
    setting = gr.State({
        "system": SystemPrompt,
    })
    current_model = gr.State(AVAILABLE_MODELS[0])
    open_panel = gr.State(None)

    with gr.Sidebar():
        gr.Markdown("# AnyCoder\nAI-Powered Code Generator")
        gr.Markdown("""Describe your app or UI in plain English. Optionally upload a UI image (for ERNIE model). Click Generate to get code and preview.""")
        gr.Markdown("**Tip:** For best search results about people or entities, include details like profession, company, or location. Example: 'John Smith software engineer at Google.'")
        gr.Markdown("**Tip:** You can attach a file (PDF, TXT, DOCX, CSV, MD) to use as reference for your prompt, e.g. 'Summarize this PDF.'")
        input = gr.Textbox(
            label="Describe your application",
            placeholder="e.g., Create a todo app with add, delete, and mark as complete functionality",
            lines=2
        )
        image_input = gr.Image(
            label="Upload UI design image (ERNIE-4.5-VL only)",
            visible=False
        )
        file_input = gr.File(
            label="Attach a file (PDF, TXT, DOCX, CSV, MD)",
            file_types=[".pdf", ".txt", ".md", ".csv", ".docx"],
            visible=True
        )
        with gr.Row():
            btn = gr.Button("Generate", variant="primary", size="sm")
            clear_btn = gr.Button("Clear", variant="secondary", size="sm")
        
        # Search toggle
        search_toggle = gr.Checkbox(
            label="🔍 Enable Web Search",
            value=False,
            info="Enable real-time web search to get the latest information and best practices"
        )
        
        # Search status indicator
        if not tavily_client:
            gr.Markdown("⚠️ **Web Search Unavailable**: Set `TAVILY_API_KEY` environment variable to enable search")
        else:
            gr.Markdown("✅ **Web Search Available**: Toggle above to enable real-time search")
        
        gr.Markdown("### Quick Examples")
        for i, demo_item in enumerate(DEMO_LIST[:5]):
            demo_card = gr.Button(
                value=demo_item['title'], 
                variant="secondary",
                size="sm"
            )
            demo_card.click(
                fn=lambda idx=i: gr.update(value=DEMO_LIST[idx]['description']),
                outputs=input
            )
        gr.Markdown("---")
        model_dropdown = gr.Dropdown(
            choices=[model['name'] for model in AVAILABLE_MODELS],
            value=AVAILABLE_MODELS[0]['name'],
            label="Select Model"
        )
        def on_model_change(model_name):
            for m in AVAILABLE_MODELS:
                if m['name'] == model_name:
                    return m, f"**Model:** {m['name']}", update_image_input_visibility(m)
            return AVAILABLE_MODELS[0], f"**Model:** {AVAILABLE_MODELS[0]['name']}", update_image_input_visibility(AVAILABLE_MODELS[0])
        model_display = gr.Markdown(f"**Model:** {AVAILABLE_MODELS[0]['name']}")
        model_dropdown.change(
            on_model_change,
            inputs=model_dropdown,
            outputs=[current_model, model_display, image_input]
        )
        with gr.Accordion("System Prompt", open=False):
            systemPromptInput = gr.Textbox(
                value=SystemPrompt,
                label="System Prompt",
                lines=10
            )
            save_prompt_btn = gr.Button("Save", variant="primary")
            def save_prompt(input):
                return {setting: {"system": input}}
            save_prompt_btn.click(save_prompt, inputs=systemPromptInput, outputs=setting)

    with gr.Column():
        model_display
        with gr.Tabs():
            with gr.Tab("Code Editor"):
                code_output = gr.Code(
                    language="html", 
                    lines=25, 
                    interactive=False,
                    label="Generated Code"
                )
            with gr.Tab("Live Preview"):
                sandbox = gr.HTML(label="Live Preview")
            with gr.Tab("History"):
                history_output = gr.Chatbot(show_label=False, height=400, type="messages")
        status_indicator = gr.Markdown(
            'Ready to generate code',
        )

    # Event handlers
    btn.click(
        generation_code,
        inputs=[input, image_input, file_input, setting, history, current_model, search_toggle],
        outputs=[code_output, history, sandbox, status_indicator, history_output]
    )
    clear_btn.click(clear_history, outputs=[history, history_output, file_input])

if __name__ == "__main__":
    demo.queue(default_concurrency_limit=20).launch(ssr_mode=True, mcp_server=True)