Spaces:
Running
Running
File size: 24,218 Bytes
082d9d1 ac157c8 a2a2a54 f695033 567736c 082d9d1 78fc423 082d9d1 e287280 082d9d1 78fc423 d142097 e287280 f4191a0 d347f16 82a5d4c d142097 082d9d1 e287280 a2a2a54 082d9d1 d142097 082d9d1 dc2cb0c 082d9d1 78fc423 082d9d1 e287280 082d9d1 e287280 082d9d1 78fc423 082d9d1 e0eaf95 082d9d1 e0eaf95 082d9d1 78fc423 082d9d1 f38f0e9 e287280 78fc423 87df3aa 78fc423 f9931c4 78fc423 f9931c4 78fc423 87df3aa f9931c4 78fc423 f9931c4 78fc423 f9931c4 78fc423 082d9d1 60cb489 082d9d1 60cb489 082d9d1 60cb489 082d9d1 a2a2a54 ac157c8 a2a2a54 ac157c8 e0eaf95 78fc423 ac157c8 78fc423 e0eaf95 78fc423 e0eaf95 78fc423 e0eaf95 78fc423 e0eaf95 78fc423 e0eaf95 78fc423 e0eaf95 78fc423 e0eaf95 082d9d1 9dfa063 082d9d1 e0eaf95 9dfa063 78fc423 a2a2a54 9dfa063 ac157c8 a2a2a54 ac157c8 9dfa063 78fc423 a2a2a54 9dfa063 e0eaf95 9dfa063 e0eaf95 9dfa063 dbf5e27 9dfa063 78fc423 9dfa063 a7d7982 e0eaf95 ac157c8 29e6ed7 e0eaf95 ac157c8 c7dcb04 0a632f8 79fe2ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
import os
import re
from http import HTTPStatus
from typing import Dict, List, Optional, Tuple
import base64
import mimetypes
import PyPDF2
import docx
import cv2
import numpy as np
from PIL import Image
import pytesseract
import gradio as gr
from huggingface_hub import InferenceClient
from tavily import TavilyClient
# Configuration
SystemPrompt = """You are a helpful coding assistant. You help users create applications by generating code based on their requirements.
When asked to create an application, you should:
1. Understand the user's requirements
2. Generate clean, working code
3. Provide HTML output when appropriate for web applications
4. Include necessary comments and documentation
5. Ensure the code is functional and follows best practices
If an image is provided, analyze it and use the visual information to better understand the user's requirements.
Always respond with code that can be executed or rendered directly.
Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text."""
# System prompt with search capability
SystemPromptWithSearch = """You are a helpful coding assistant with access to real-time web search. You help users create applications by generating code based on their requirements.
When asked to create an application, you should:
1. Understand the user's requirements
2. Use web search when needed to find the latest information, best practices, or specific technologies
3. Generate clean, working code
4. Provide HTML output when appropriate for web applications
5. Include necessary comments and documentation
6. Ensure the code is functional and follows best practices
If an image is provided, analyze it and use the visual information to better understand the user's requirements.
Always respond with code that can be executed or rendered directly.
Always output only the HTML code inside a ```html ... ``` code block, and do not include any explanations or extra text."""
# Available models
AVAILABLE_MODELS = [
{
"name": "DeepSeek V3",
"id": "deepseek-ai/DeepSeek-V3-0324",
"description": "DeepSeek V3 model for code generation"
},
{
"name": "DeepSeek R1",
"id": "deepseek-ai/DeepSeek-R1-0528",
"description": "DeepSeek R1 model for code generation"
},
{
"name": "ERNIE-4.5-VL",
"id": "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT",
"description": "ERNIE-4.5-VL model for multimodal code generation with image support"
},
{
"name": "MiniMax M1",
"id": "MiniMaxAI/MiniMax-M1-80k",
"description": "MiniMax M1 model for code generation and general tasks"
},
{
"name": "Qwen3-235B-A22B",
"id": "Qwen/Qwen3-235B-A22B",
"description": "Qwen3-235B-A22B model for code generation and general tasks"
},
{
"name": "SmolLM3-3B",
"id": "HuggingFaceTB/SmolLM3-3B",
"description": "SmolLM3-3B model for code generation and general tasks"
}
]
DEMO_LIST = [
{
"title": "Todo App",
"description": "Create a simple todo application with add, delete, and mark as complete functionality"
},
{
"title": "Calculator",
"description": "Build a basic calculator with addition, subtraction, multiplication, and division"
},
{
"title": "Weather Dashboard",
"description": "Create a weather dashboard that displays current weather information"
},
{
"title": "Chat Interface",
"description": "Build a chat interface with message history and user input"
},
{
"title": "E-commerce Product Card",
"description": "Create a product card component for an e-commerce website"
},
{
"title": "Login Form",
"description": "Build a responsive login form with validation"
},
{
"title": "Dashboard Layout",
"description": "Create a dashboard layout with sidebar navigation and main content area"
},
{
"title": "Data Table",
"description": "Build a data table with sorting and filtering capabilities"
},
{
"title": "Image Gallery",
"description": "Create an image gallery with lightbox functionality and responsive grid layout"
},
{
"title": "UI from Image",
"description": "Upload an image of a UI design and I'll generate the HTML/CSS code for it"
},
{
"title": "Extract Text from Image",
"description": "Upload an image containing text and I'll extract and process the text content"
}
]
# HF Inference Client
YOUR_API_TOKEN = os.getenv('HF_TOKEN')
client = InferenceClient(
provider="auto",
api_key=YOUR_API_TOKEN,
bill_to="huggingface"
)
# Tavily Search Client
TAVILY_API_KEY = os.getenv('TAVILY_API_KEY')
tavily_client = None
if TAVILY_API_KEY:
try:
tavily_client = TavilyClient(api_key=TAVILY_API_KEY)
except Exception as e:
print(f"Failed to initialize Tavily client: {e}")
tavily_client = None
History = List[Tuple[str, str]]
Messages = List[Dict[str, str]]
def history_to_messages(history: History, system: str) -> Messages:
messages = [{'role': 'system', 'content': system}]
for h in history:
# Handle multimodal content in history
user_content = h[0]
if isinstance(user_content, list):
# Extract text from multimodal content
text_content = ""
for item in user_content:
if isinstance(item, dict) and item.get("type") == "text":
text_content += item.get("text", "")
user_content = text_content if text_content else str(user_content)
messages.append({'role': 'user', 'content': user_content})
messages.append({'role': 'assistant', 'content': h[1]})
return messages
def messages_to_history(messages: Messages) -> Tuple[str, History]:
assert messages[0]['role'] == 'system'
history = []
for q, r in zip(messages[1::2], messages[2::2]):
# Extract text content from multimodal messages for history
user_content = q['content']
if isinstance(user_content, list):
text_content = ""
for item in user_content:
if isinstance(item, dict) and item.get("type") == "text":
text_content += item.get("text", "")
user_content = text_content if text_content else str(user_content)
history.append([user_content, r['content']])
return history
def history_to_chatbot_messages(history: History) -> List[Dict[str, str]]:
"""Convert history tuples to chatbot message format"""
messages = []
for user_msg, assistant_msg in history:
# Handle multimodal content
if isinstance(user_msg, list):
text_content = ""
for item in user_msg:
if isinstance(item, dict) and item.get("type") == "text":
text_content += item.get("text", "")
user_msg = text_content if text_content else str(user_msg)
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
return messages
def remove_code_block(text):
# Try to match code blocks with language markers
patterns = [
r'```(?:html|HTML)\n([\s\S]+?)\n```', # Match ```html or ```HTML
r'```\n([\s\S]+?)\n```', # Match code blocks without language markers
r'```([\s\S]+?)```' # Match code blocks without line breaks
]
for pattern in patterns:
match = re.search(pattern, text, re.DOTALL)
if match:
extracted = match.group(1).strip()
return extracted
# If no code block is found, check if the entire text is HTML
if text.strip().startswith('<!DOCTYPE html>') or text.strip().startswith('<html') or text.strip().startswith('<'):
return text.strip()
return text.strip()
def history_render(history: History):
return gr.update(visible=True), history
def clear_history():
return [], [] # Empty lists for both tuple format and chatbot messages
def update_image_input_visibility(model):
"""Update image input visibility based on selected model"""
is_ernie_vl = model.get("id") == "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT"
return gr.update(visible=is_ernie_vl)
def process_image_for_model(image):
"""Convert image to base64 for model input"""
if image is None:
return None
# Convert numpy array to PIL Image if needed
import io
import base64
import numpy as np
from PIL import Image
# Handle numpy array from Gradio
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
buffer = io.BytesIO()
image.save(buffer, format='PNG')
img_str = base64.b64encode(buffer.getvalue()).decode()
return f"data:image/png;base64,{img_str}"
def create_multimodal_message(text, image=None):
"""Create a multimodal message with text and optional image"""
if image is None:
return {"role": "user", "content": text}
content = [
{
"type": "text",
"text": text
},
{
"type": "image_url",
"image_url": {
"url": process_image_for_model(image)
}
}
]
return {"role": "user", "content": content}
# Updated for faster Tavily search and closer prompt usage
# Uses 'advanced' search_depth and auto_parameters=True for speed and relevance
def perform_web_search(query: str, max_results: int = 5, include_domains=None, exclude_domains=None) -> str:
"""Perform web search using Tavily with default parameters"""
if not tavily_client:
return "Web search is not available. Please set the TAVILY_API_KEY environment variable."
try:
# Use Tavily defaults with advanced search depth for better results
search_params = {
"search_depth": "advanced",
"max_results": min(max(1, max_results), 20)
}
if include_domains is not None:
search_params["include_domains"] = include_domains
if exclude_domains is not None:
search_params["exclude_domains"] = exclude_domains
response = tavily_client.search(query, **search_params)
search_results = []
for result in response.get('results', []):
title = result.get('title', 'No title')
url = result.get('url', 'No URL')
content = result.get('content', 'No content')
search_results.append(f"Title: {title}\nURL: {url}\nContent: {content}\n")
if search_results:
return "Web Search Results:\n\n" + "\n---\n".join(search_results)
else:
return "No search results found."
except Exception as e:
return f"Search error: {str(e)}"
def enhance_query_with_search(query: str, enable_search: bool) -> str:
"""Enhance the query with web search results if search is enabled"""
if not enable_search or not tavily_client:
return query
# Perform search to get relevant information
search_results = perform_web_search(query)
# Combine original query with search results
enhanced_query = f"""Original Query: {query}
{search_results}
Please use the search results above to help create the requested application with the most up-to-date information and best practices."""
return enhanced_query
def send_to_sandbox(code):
# Add a wrapper to inject necessary permissions and ensure full HTML
wrapped_code = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset=\"UTF-8\">
<meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\">
<script>
// Safe localStorage polyfill
const safeStorage = {{
_data: {{}},
getItem: function(key) {{ return this._data[key] || null; }},
setItem: function(key, value) {{ this._data[key] = value; }},
removeItem: function(key) {{ delete this._data[key]; }},
clear: function() {{ this._data = {{}}; }}
}};
Object.defineProperty(window, 'localStorage', {{
value: safeStorage,
writable: false
}});
window.onerror = function(message, source, lineno, colno, error) {{
console.error('Error:', message);
}};
</script>
</head>
<body>
{code}
</body>
</html>
"""
encoded_html = base64.b64encode(wrapped_code.encode('utf-8')).decode('utf-8')
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
iframe = f'<iframe src="{data_uri}" width="100%" height="920px" sandbox="allow-scripts allow-same-origin allow-forms allow-popups allow-modals allow-presentation" allow="display-capture"></iframe>'
return iframe
def demo_card_click(e: gr.EventData):
try:
# Get the index from the event data
if hasattr(e, '_data') and e._data:
# Try different ways to get the index
if 'index' in e._data:
index = e._data['index']
elif 'component' in e._data and 'index' in e._data['component']:
index = e._data['component']['index']
elif 'target' in e._data and 'index' in e._data['target']:
index = e._data['target']['index']
else:
# If we can't get the index, try to extract it from the card data
index = 0
else:
index = 0
# Ensure index is within bounds
if index >= len(DEMO_LIST):
index = 0
return DEMO_LIST[index]['description']
except (KeyError, IndexError, AttributeError) as e:
# Return the first demo description as fallback
return DEMO_LIST[0]['description']
def extract_text_from_image(image_path):
"""Extract text from image using OCR"""
try:
# Check if tesseract is available
try:
pytesseract.get_tesseract_version()
except Exception:
return "Error: Tesseract OCR is not installed. Please install Tesseract to extract text from images. See install_tesseract.md for instructions."
# Read image using OpenCV
image = cv2.imread(image_path)
if image is None:
return "Error: Could not read image file"
# Convert to RGB (OpenCV uses BGR)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Preprocess image for better OCR results
# Convert to grayscale
gray = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2GRAY)
# Apply thresholding to get binary image
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# Extract text using pytesseract
text = pytesseract.image_to_string(binary, config='--psm 6')
return text.strip() if text.strip() else "No text found in image"
except Exception as e:
return f"Error extracting text from image: {e}"
def extract_text_from_file(file_path):
if not file_path:
return ""
mime, _ = mimetypes.guess_type(file_path)
ext = os.path.splitext(file_path)[1].lower()
try:
if ext == ".pdf":
with open(file_path, "rb") as f:
reader = PyPDF2.PdfReader(f)
return "\n".join(page.extract_text() or "" for page in reader.pages)
elif ext in [".txt", ".md"]:
with open(file_path, "r", encoding="utf-8") as f:
return f.read()
elif ext == ".csv":
with open(file_path, "r", encoding="utf-8") as f:
return f.read()
elif ext == ".docx":
doc = docx.Document(file_path)
return "\n".join([para.text for para in doc.paragraphs])
elif ext.lower() in [".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".tif", ".gif", ".webp"]:
return extract_text_from_image(file_path)
else:
return ""
except Exception as e:
return f"Error extracting text: {e}"
def generation_code(query: Optional[str], image: Optional[gr.Image], file: Optional[str], _setting: Dict[str, str], _history: Optional[History], _current_model: Dict, enable_search: bool = False):
if query is None:
query = ''
if _history is None:
_history = []
# Choose system prompt based on search setting
system_prompt = SystemPromptWithSearch if enable_search else _setting['system']
messages = history_to_messages(_history, system_prompt)
# Extract file text and append to query if file is present
file_text = ""
if file:
file_text = extract_text_from_file(file)
if file_text:
file_text = file_text[:5000] # Limit to 5000 chars for prompt size
query = f"{query}\n\n[Reference file content below]\n{file_text}"
# Enhance query with search if enabled
enhanced_query = enhance_query_with_search(query, enable_search)
if image is not None:
messages.append(create_multimodal_message(enhanced_query, image))
else:
messages.append({'role': 'user', 'content': enhanced_query})
try:
completion = client.chat.completions.create(
model=_current_model["id"],
messages=messages,
stream=True,
max_tokens=5000
)
content = ""
for chunk in completion:
if chunk.choices[0].delta.content:
content += chunk.choices[0].delta.content
clean_code = remove_code_block(content)
search_status = " (with web search)" if enable_search and tavily_client else ""
yield {
code_output: clean_code,
status_indicator: f'<div class="status-indicator generating" id="status">Generating code{search_status}...</div>',
history_output: history_to_chatbot_messages(_history),
}
_history = messages_to_history(messages + [{
'role': 'assistant',
'content': content
}])
yield {
code_output: remove_code_block(content),
history: _history,
sandbox: send_to_sandbox(remove_code_block(content)),
status_indicator: '<div class="status-indicator success" id="status">Code generated successfully!</div>',
history_output: history_to_chatbot_messages(_history),
}
except Exception as e:
error_message = f"Error: {str(e)}"
yield {
code_output: error_message,
status_indicator: '<div class="status-indicator error" id="status">Error generating code</div>',
history_output: history_to_chatbot_messages(_history),
}
# Main application
with gr.Blocks(theme=gr.themes.Base(), title="AnyCoder - AI Code Generator") as demo:
history = gr.State([])
setting = gr.State({
"system": SystemPrompt,
})
current_model = gr.State(AVAILABLE_MODELS[0])
open_panel = gr.State(None)
with gr.Sidebar():
gr.Markdown("# AnyCoder\nAI-Powered Code Generator")
gr.Markdown("""Describe your app or UI in plain English. Optionally upload a UI image (for ERNIE model). Click Generate to get code and preview.""")
gr.Markdown("**Tip:** For best search results about people or entities, include details like profession, company, or location. Example: 'John Smith software engineer at Google.'")
gr.Markdown("**Tip:** You can attach a file (PDF, TXT, DOCX, CSV, MD, Images) to use as reference for your prompt, e.g. 'Summarize this PDF' or 'Extract text from this image'.")
input = gr.Textbox(
label="Describe your application",
placeholder="e.g., Create a todo app with add, delete, and mark as complete functionality",
lines=2
)
image_input = gr.Image(
label="Upload UI design image (ERNIE-4.5-VL only)",
visible=False
)
file_input = gr.File(
label="Attach a file (PDF, TXT, DOCX, CSV, MD, Images)",
file_types=[".pdf", ".txt", ".md", ".csv", ".docx", ".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".tif", ".gif", ".webp"],
visible=True
)
with gr.Row():
btn = gr.Button("Generate", variant="primary", size="sm")
clear_btn = gr.Button("Clear", variant="secondary", size="sm")
# Search toggle
search_toggle = gr.Checkbox(
label="🔍 Enable Web Search",
value=False,
info="Enable real-time web search to get the latest information and best practices"
)
# Search status indicator
if not tavily_client:
gr.Markdown("⚠️ **Web Search Unavailable**: Set `TAVILY_API_KEY` environment variable to enable search")
else:
gr.Markdown("✅ **Web Search Available**: Toggle above to enable real-time search")
gr.Markdown("📷 **Image Text Extraction**: Upload images to extract text using OCR (requires Tesseract installation)")
gr.Markdown("### Quick Examples")
for i, demo_item in enumerate(DEMO_LIST[:5]):
demo_card = gr.Button(
value=demo_item['title'],
variant="secondary",
size="sm"
)
demo_card.click(
fn=lambda idx=i: gr.update(value=DEMO_LIST[idx]['description']),
outputs=input
)
gr.Markdown("---")
model_dropdown = gr.Dropdown(
choices=[model['name'] for model in AVAILABLE_MODELS],
value=AVAILABLE_MODELS[0]['name'],
label="Select Model"
)
def on_model_change(model_name):
for m in AVAILABLE_MODELS:
if m['name'] == model_name:
return m, f"**Model:** {m['name']}", update_image_input_visibility(m)
return AVAILABLE_MODELS[0], f"**Model:** {AVAILABLE_MODELS[0]['name']}", update_image_input_visibility(AVAILABLE_MODELS[0])
model_display = gr.Markdown(f"**Model:** {AVAILABLE_MODELS[0]['name']}")
model_dropdown.change(
on_model_change,
inputs=model_dropdown,
outputs=[current_model, model_display, image_input]
)
with gr.Accordion("System Prompt", open=False):
systemPromptInput = gr.Textbox(
value=SystemPrompt,
label="System Prompt",
lines=10
)
save_prompt_btn = gr.Button("Save", variant="primary")
def save_prompt(input):
return {setting: {"system": input}}
save_prompt_btn.click(save_prompt, inputs=systemPromptInput, outputs=setting)
with gr.Column():
model_display
with gr.Tabs():
with gr.Tab("Code Editor"):
code_output = gr.Code(
language="html",
lines=25,
interactive=False,
label="Generated Code"
)
with gr.Tab("Live Preview"):
sandbox = gr.HTML(label="Live Preview")
with gr.Tab("History"):
history_output = gr.Chatbot(show_label=False, height=400, type="messages")
status_indicator = gr.Markdown(
'Ready to generate code',
)
# Event handlers
btn.click(
generation_code,
inputs=[input, image_input, file_input, setting, history, current_model, search_toggle],
outputs=[code_output, history, sandbox, status_indicator, history_output]
)
clear_btn.click(clear_history, outputs=[history, history_output, file_input])
if __name__ == "__main__":
demo.queue(default_concurrency_limit=20).launch(ssr_mode=True, mcp_server=True) |