AK391
commited on
Commit
·
e6e7cb5
1
Parent(s):
528cf18
add files
Browse files- data/coco-kp.yaml +65 -0
- data/crowdpose.yaml +62 -0
- data/hyps/hyp.kp-p6.yaml +36 -0
- data/hyps/hyp.kp.yaml +54 -0
- data/scripts/download_models.sh +10 -0
- data/scripts/get_coco_kp.sh +27 -0
- data/scripts/get_crowdpose.sh +11 -0
- demos/flash_mob.py +166 -0
- demos/general.py +165 -0
- demos/squash.py +243 -0
- models/common.py +452 -0
- models/experimental.py +115 -0
- models/yolo.py +327 -0
- models/yolov5l6.yaml +60 -0
- models/yolov5m6.yaml +60 -0
- models/yolov5s6.yaml +60 -0
- train.py +601 -0
- utils/.DS_Store +0 -0
- utils/activations.py +101 -0
- utils/augmentations.py +321 -0
- utils/autoanchor.py +164 -0
- utils/callbacks.py +179 -0
- utils/datasets.py +1056 -0
- utils/downloads.py +149 -0
- utils/general.py +853 -0
- utils/labels.py +104 -0
- utils/loggers/__init__.py +149 -0
- utils/loggers/wandb/README.md +140 -0
- utils/loggers/wandb/__init__.py +0 -0
- utils/loggers/wandb/log_dataset.py +23 -0
- utils/loggers/wandb/sweep.py +33 -0
- utils/loggers/wandb/sweep.yaml +143 -0
- utils/loggers/wandb/wandb_utils.py +519 -0
- utils/loss.py +262 -0
- utils/metrics.py +333 -0
- utils/plots.py +437 -0
- utils/torch_utils.py +350 -0
- val.py +336 -0
data/coco-kp.yaml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
|
3 |
+
path: data/datasets/coco
|
4 |
+
labels: kp_labels
|
5 |
+
train: kp_labels/img_txt/train2017.txt
|
6 |
+
val: kp_labels/img_txt/val2017.txt
|
7 |
+
test: kp_labels/img_txt/test2017.txt
|
8 |
+
|
9 |
+
train_annotations: annotations/person_keypoints_train2017.json
|
10 |
+
val_annotations: annotations/person_keypoints_val2017.json
|
11 |
+
test_annotations: annotations/image_info_test-dev2017.json
|
12 |
+
|
13 |
+
pose_obj: True # write pose object labels
|
14 |
+
|
15 |
+
nc: 18 # number of classes (person class + 17 keypoint classes)
|
16 |
+
num_coords: 34 # number of keypoint coordinates (x, y)
|
17 |
+
|
18 |
+
# class names
|
19 |
+
names: [ 'person', 'nose',
|
20 |
+
'left_eye', 'right_eye',
|
21 |
+
'left_ear', 'right_ear',
|
22 |
+
'left_shoulder', 'right_shoulder',
|
23 |
+
'left_elbow', 'right_elbow',
|
24 |
+
'left_wrist', 'right_wrist',
|
25 |
+
'left_hip', 'right_hip',
|
26 |
+
'left_knee', 'right_knee',
|
27 |
+
'left_ankle', 'right_ankle' ]
|
28 |
+
|
29 |
+
kp_bbox: 0.05 # keypoint object size (normalized by longest img dim)
|
30 |
+
kp_flip: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] # for left-right keypoint flipping
|
31 |
+
kp_left: [1, 3, 5, 7, 9, 11, 13, 15] # left keypoints
|
32 |
+
|
33 |
+
kp_names_short:
|
34 |
+
0: 'n'
|
35 |
+
1: 'ley'
|
36 |
+
2: 'rey'
|
37 |
+
3: 'lea'
|
38 |
+
4: 'rea'
|
39 |
+
5: 'ls'
|
40 |
+
6: 'rs'
|
41 |
+
7: 'lel'
|
42 |
+
8: 'rel'
|
43 |
+
9: 'lw'
|
44 |
+
10: 'rw'
|
45 |
+
11: 'lh'
|
46 |
+
12: 'rh'
|
47 |
+
13: 'lk'
|
48 |
+
14: 'rk'
|
49 |
+
15: 'la'
|
50 |
+
16: 'ra'
|
51 |
+
|
52 |
+
# segments for plotting
|
53 |
+
segments:
|
54 |
+
1: [5, 6]
|
55 |
+
2: [5, 11]
|
56 |
+
3: [11, 12]
|
57 |
+
4: [12, 6]
|
58 |
+
5: [5, 7]
|
59 |
+
6: [7, 9]
|
60 |
+
7: [6, 8]
|
61 |
+
8: [8, 10]
|
62 |
+
9: [11, 13]
|
63 |
+
10: [13, 15]
|
64 |
+
11: [12, 14]
|
65 |
+
12: [14, 16]
|
data/crowdpose.yaml
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
|
3 |
+
path: data/datasets/crowdpose
|
4 |
+
labels: kp_labels
|
5 |
+
train: kp_labels/img_txt/trainval.txt
|
6 |
+
val: kp_labels/img_txt/test.txt
|
7 |
+
|
8 |
+
train_annotations: crowdpose_trainval.json
|
9 |
+
val_annotations: crowdpose_test.json
|
10 |
+
|
11 |
+
pose_obj: True # write pose object labels
|
12 |
+
|
13 |
+
nc: 15 # number of classes (person class + 14 keypoint classes)
|
14 |
+
num_coords: 28 # number of keypoint coordinates (x, y)
|
15 |
+
|
16 |
+
# class names
|
17 |
+
names: [ 'person',
|
18 |
+
'left_shoulder', 'right_shoulder',
|
19 |
+
'left_elbow', 'right_elbow',
|
20 |
+
'left_wrist', 'right_wrist',
|
21 |
+
'left_hip', 'right_hip',
|
22 |
+
'left_knee', 'right_knee',
|
23 |
+
'left_ankle', 'right_ankle',
|
24 |
+
'head', 'neck']
|
25 |
+
|
26 |
+
kp_bbox: 0.05 # keypoint object size (normalized by longest img dim)
|
27 |
+
kp_flip: [1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 12, 13] # for left-right keypoint flipping
|
28 |
+
kp_left: [0, 2, 4, 6, 8, 10] # left keypoints
|
29 |
+
|
30 |
+
kp_names_short:
|
31 |
+
0: 'ls'
|
32 |
+
1: 'rs'
|
33 |
+
2: 'lel'
|
34 |
+
3: 'rel'
|
35 |
+
4: 'lw'
|
36 |
+
5: 'rw'
|
37 |
+
6: 'lh'
|
38 |
+
7: 'rh'
|
39 |
+
8: 'lk'
|
40 |
+
9: 'rk'
|
41 |
+
10: 'la'
|
42 |
+
11: 'ra'
|
43 |
+
12: 'h'
|
44 |
+
13: 'n'
|
45 |
+
|
46 |
+
# segments for plotting
|
47 |
+
segments:
|
48 |
+
1: [0, 13]
|
49 |
+
2: [1, 13]
|
50 |
+
3: [0, 2]
|
51 |
+
4: [2, 4]
|
52 |
+
5: [1, 3]
|
53 |
+
6: [3, 5]
|
54 |
+
7: [0, 6]
|
55 |
+
8: [6, 7]
|
56 |
+
9: [7, 1]
|
57 |
+
10: [6, 8]
|
58 |
+
11: [8, 10]
|
59 |
+
12: [7, 9]
|
60 |
+
13: [9, 11]
|
61 |
+
14: [12, 13]
|
62 |
+
|
data/hyps/hyp.kp-p6.yaml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# Hyperparameters for COCO training from scratch
|
3 |
+
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
|
4 |
+
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
+
|
6 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
+
lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
|
8 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
9 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
10 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
11 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
12 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
13 |
+
box: 0.05 # box loss gain
|
14 |
+
cls: 0.3 # cls loss gain
|
15 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
16 |
+
obj: 0.7 # obj loss gain (scale with pixels)
|
17 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
18 |
+
kp: 0.025 # kp loss gain
|
19 |
+
iou_t: 0.20 # IoU training threshold
|
20 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
21 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
22 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
23 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
24 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
25 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
26 |
+
degrees: 0.0 # image rotation (+/- deg)
|
27 |
+
translate: 0.1 # image translation (+/- fraction)
|
28 |
+
scale: 0.9 # image scale (+/- gain)
|
29 |
+
shear: 0.0 # image shear (+/- deg)
|
30 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
31 |
+
flipud: 0.0 # image flip up-down (probability)
|
32 |
+
fliplr: 0.5 # image flip left-right (probability)
|
33 |
+
mosaic: 1.0 # image mosaic (probability)
|
34 |
+
mixup: 0.0 # image mixup (probability)
|
35 |
+
copy_paste: 0.0 # segment copy-paste (probability)
|
36 |
+
kp_bbox: 0.05
|
data/hyps/hyp.kp.yaml
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
# Hyperparameters for COCO training from scratch
|
3 |
+
# python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
|
4 |
+
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
+
|
6 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
+
lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
|
8 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
9 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
10 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
11 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
12 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
13 |
+
box: 0.05 # box loss gain
|
14 |
+
cls: 0.5 # cls loss gain
|
15 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
16 |
+
obj: 1.0 # obj loss gain (scale with pixels)
|
17 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
18 |
+
kp: 0.05 # kp loss gain
|
19 |
+
iou_t: 0.20 # IoU training threshold
|
20 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
21 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
22 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
23 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
24 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
25 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
26 |
+
degrees: 0.0 # image rotation (+/- deg)
|
27 |
+
translate: 0.2 # image translation (+/- fraction)
|
28 |
+
scale: 0.8 # image scale (+/- gain)
|
29 |
+
shear: 0.0 # image shear (+/- deg)
|
30 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
31 |
+
flipud: 0.0 # image flip up-down (probability)
|
32 |
+
fliplr: 0.5 # image flip left-right (probability)
|
33 |
+
mosaic: 1.0 # image mosaic (probability)
|
34 |
+
mixup: 0.0 # image mixup (probability)
|
35 |
+
copy_paste: 0.0 # segment copy-paste (probability)
|
36 |
+
kp_bbox: 0.05
|
37 |
+
#kp_bbox:
|
38 |
+
#- 0.026 # nose
|
39 |
+
#- 0.025 # left eye
|
40 |
+
#- 0.025 # right eye
|
41 |
+
#- 0.035 # left ear
|
42 |
+
#- 0.035 # right ear
|
43 |
+
#- 0.079 # left shoulder
|
44 |
+
#- 0.079 # right shoulder
|
45 |
+
#- 0.072 # left elbow
|
46 |
+
#- 0.072 # right elbow
|
47 |
+
#- 0.062 # left wrist
|
48 |
+
#- 0.062 # right wrist
|
49 |
+
#- 0.107 # left hip
|
50 |
+
#- 0.107 # right hip
|
51 |
+
#- 0.087 # left knee
|
52 |
+
#- 0.087 # right knee
|
53 |
+
#- 0.089 # left ankle
|
54 |
+
#- 0.089 # right ankle
|
data/scripts/download_models.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Example usage: bash data/scripts/download_models.sh
|
3 |
+
|
4 |
+
gdown https://drive.google.com/uc?id=1hv0xwdbdf-Ym06Hpjy6wKyIklNmKmB99 # kapao_s_coco.pt
|
5 |
+
gdown https://drive.google.com/uc?id=1B-QGa99n7ZrxkgKCQ1XHnm6j0Y-lvOQz # kapao_m_coco.pt
|
6 |
+
gdown https://drive.google.com/uc?id=1jYDfvRjhMoDf5xpMq1AuzdkFzUeLwt85 # kapao_l_coco.pt
|
7 |
+
|
8 |
+
gdown https://drive.google.com/uc?id=1SmWwmqPwb_G6d9UPAFSUnWZ-4eaL9TTv # kapao_s_crowdpose.pt
|
9 |
+
gdown https://drive.google.com/uc?id=1IqrAk-gBdcfONrlIT6d4ndaDqnlFmT0r # kapao_m_crowdpose.pt
|
10 |
+
gdown https://drive.google.com/uc?id=146DW9ELzIBY2oDofPru446yLErxHrjJU # kapao_l_crowdpose.pt
|
data/scripts/get_coco_kp.sh
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Example usage: bash data/scripts/get_coco_kp.sh
|
3 |
+
|
4 |
+
# Make dataset directories
|
5 |
+
mkdir -p data/datasets/coco/images
|
6 |
+
|
7 |
+
# Download/unzip annotations
|
8 |
+
d='data/datasets/coco' # unzip directory
|
9 |
+
f1='annotations_trainval2017.zip'
|
10 |
+
f2='image_info_test2017.zip'
|
11 |
+
url=http://images.cocodataset.org/annotations/
|
12 |
+
for f in $f1 $f2; do
|
13 |
+
echo 'Downloading' $url$f '...'
|
14 |
+
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
|
15 |
+
done
|
16 |
+
|
17 |
+
# Download/unzip images
|
18 |
+
d='data/datasets/coco/images' # unzip directory
|
19 |
+
url=http://images.cocodataset.org/zips/
|
20 |
+
f1='train2017.zip' # 19G, 118k images
|
21 |
+
f2='val2017.zip' # 1G, 5k images
|
22 |
+
f3='test2017.zip' # 7G, 41k images (optional)
|
23 |
+
for f in $f1 $f2 $f3; do
|
24 |
+
echo 'Downloading' $url$f '...'
|
25 |
+
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
|
26 |
+
done
|
27 |
+
wait # finish background tasks
|
data/scripts/get_crowdpose.sh
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Example usage: bash data/scripts/get_crowdpose.sh
|
3 |
+
|
4 |
+
# Make dataset directories
|
5 |
+
mkdir -p data/datasets/crowdpose
|
6 |
+
|
7 |
+
gdown -O data/datasets/crowdpose/images.zip https://drive.google.com/uc?id=1VprytECcLtU4tKP32SYi_7oDRbw7yUTL
|
8 |
+
gdown -O data/datasets/crowdpose/crowdpose_trainval.json https://drive.google.com/uc?id=13xScmTWqO6Y6m_CjiQ-23ptgX9sC-J9I
|
9 |
+
gdown -O data/datasets/crowdpose/crowdpose_test.json https://drive.google.com/uc?id=1FUzRj-dPbL1OyBwcIX2BgFPEaY5Yrz7S
|
10 |
+
unzip -q -d data/datasets/crowdpose data/datasets/crowdpose/images.zip
|
11 |
+
rm data/datasets/crowdpose/images.zip
|
demos/flash_mob.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from pathlib import Path
|
3 |
+
FILE = Path(__file__).absolute()
|
4 |
+
sys.path.append(FILE.parents[1].as_posix()) # add kapao/ to path
|
5 |
+
|
6 |
+
import argparse
|
7 |
+
from pytube import YouTube
|
8 |
+
import os.path as osp
|
9 |
+
from utils.torch_utils import select_device, time_sync
|
10 |
+
from utils.general import check_img_size
|
11 |
+
from utils.datasets import LoadImages
|
12 |
+
from models.experimental import attempt_load
|
13 |
+
import torch
|
14 |
+
import cv2
|
15 |
+
import numpy as np
|
16 |
+
import yaml
|
17 |
+
from tqdm import tqdm
|
18 |
+
import imageio
|
19 |
+
from val import run_nms, post_process_batch
|
20 |
+
|
21 |
+
|
22 |
+
VIDEO_NAME = 'Crazy Uptown Funk Flashmob in Sydney for sydney domains campaign.mp4'
|
23 |
+
URL = 'https://www.youtube.com/watch?v=2DiQUX11YaY&ab_channel=CrazyDomains'
|
24 |
+
COLOR = (255, 0, 255) # purple
|
25 |
+
ALPHA = 0.5
|
26 |
+
SEG_THICK = 3
|
27 |
+
FPS_TEXT_SIZE = 2
|
28 |
+
|
29 |
+
|
30 |
+
if __name__ == '__main__':
|
31 |
+
parser = argparse.ArgumentParser()
|
32 |
+
parser.add_argument('--data', type=str, default='data/coco-kp.yaml')
|
33 |
+
parser.add_argument('--imgsz', type=int, default=1280)
|
34 |
+
parser.add_argument('--weights', default='kapao_s_coco.pt')
|
35 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or cpu')
|
36 |
+
parser.add_argument('--half', action='store_true')
|
37 |
+
parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
|
38 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
39 |
+
parser.add_argument('--no-kp-dets', action='store_true', help='do not use keypoint objects')
|
40 |
+
parser.add_argument('--conf-thres-kp', type=float, default=0.5)
|
41 |
+
parser.add_argument('--conf-thres-kp-person', type=float, default=0.2)
|
42 |
+
parser.add_argument('--iou-thres-kp', type=float, default=0.45)
|
43 |
+
parser.add_argument('--overwrite-tol', type=int, default=50)
|
44 |
+
parser.add_argument('--scales', type=float, nargs='+', default=[1])
|
45 |
+
parser.add_argument('--flips', type=int, nargs='+', default=[-1])
|
46 |
+
parser.add_argument('--display', action='store_true', help='display inference results')
|
47 |
+
parser.add_argument('--fps', action='store_true', help='display fps')
|
48 |
+
parser.add_argument('--gif', action='store_true', help='create fig')
|
49 |
+
parser.add_argument('--start', type=int, default=68, help='start time (s)')
|
50 |
+
parser.add_argument('--end', type=int, default=98, help='end time (s)')
|
51 |
+
args = parser.parse_args()
|
52 |
+
|
53 |
+
with open(args.data) as f:
|
54 |
+
data = yaml.safe_load(f) # load data dict
|
55 |
+
|
56 |
+
# add inference settings to data dict
|
57 |
+
data['imgsz'] = args.imgsz
|
58 |
+
data['conf_thres'] = args.conf_thres
|
59 |
+
data['iou_thres'] = args.iou_thres
|
60 |
+
data['use_kp_dets'] = not args.no_kp_dets
|
61 |
+
data['conf_thres_kp'] = args.conf_thres_kp
|
62 |
+
data['iou_thres_kp'] = args.iou_thres_kp
|
63 |
+
data['conf_thres_kp_person'] = args.conf_thres_kp_person
|
64 |
+
data['overwrite_tol'] = args.overwrite_tol
|
65 |
+
data['scales'] = args.scales
|
66 |
+
data['flips'] = [None if f == -1 else f for f in args.flips]
|
67 |
+
|
68 |
+
if not osp.isfile(VIDEO_NAME):
|
69 |
+
yt = YouTube(URL)
|
70 |
+
# [print(s) for s in yt.streams]
|
71 |
+
stream = [s for s in yt.streams if s.itag == 136][0] # 720p, non-progressive
|
72 |
+
print('Downloading squash demo video...')
|
73 |
+
stream.download()
|
74 |
+
print('Done.')
|
75 |
+
|
76 |
+
device = select_device(args.device, batch_size=1)
|
77 |
+
print('Using device: {}'.format(device))
|
78 |
+
|
79 |
+
model = attempt_load(args.weights, map_location=device) # load FP32 model
|
80 |
+
half = args.half & (device.type != 'cpu')
|
81 |
+
if half: # half precision only supported on CUDA
|
82 |
+
model.half()
|
83 |
+
stride = int(model.stride.max()) # model stride
|
84 |
+
|
85 |
+
imgsz = check_img_size(args.imgsz, s=stride) # check image size
|
86 |
+
dataset = LoadImages('./{}'.format(VIDEO_NAME), img_size=imgsz, stride=stride, auto=True)
|
87 |
+
|
88 |
+
if device.type != 'cpu':
|
89 |
+
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
90 |
+
|
91 |
+
cap = dataset.cap
|
92 |
+
cap.set(cv2.CAP_PROP_POS_MSEC, args.start * 1000)
|
93 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
94 |
+
n = int(fps * (args.end - args.start))
|
95 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
96 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
97 |
+
gif_frames = []
|
98 |
+
video_name = 'flash_mob_inference_{}'.format(osp.splitext(args.weights)[0])
|
99 |
+
|
100 |
+
if not args.display:
|
101 |
+
writer = cv2.VideoWriter(video_name + '.mp4',
|
102 |
+
cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
103 |
+
if not args.fps: # tqdm might slows down inference
|
104 |
+
dataset = tqdm(dataset, desc='Writing inference video', total=n)
|
105 |
+
|
106 |
+
t0 = time_sync()
|
107 |
+
for i, (path, img, im0, _) in enumerate(dataset):
|
108 |
+
img = torch.from_numpy(img).to(device)
|
109 |
+
img = img.half() if half else img.float() # uint8 to fp16/32
|
110 |
+
img = img / 255.0 # 0 - 255 to 0.0 - 1.0
|
111 |
+
if len(img.shape) == 3:
|
112 |
+
img = img[None] # expand for batch dim
|
113 |
+
|
114 |
+
out = model(img, augment=True, kp_flip=data['kp_flip'], scales=data['scales'], flips=data['flips'])[0]
|
115 |
+
person_dets, kp_dets = run_nms(data, out)
|
116 |
+
bboxes, poses, _, _, _ = post_process_batch(data, img, [], [[im0.shape[:2]]], person_dets, kp_dets)
|
117 |
+
|
118 |
+
im0_copy = im0.copy()
|
119 |
+
|
120 |
+
# DRAW POSES
|
121 |
+
for j, (bbox, pose) in enumerate(zip(bboxes, poses)):
|
122 |
+
x1, y1, x2, y2 = bbox
|
123 |
+
size = ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 0.5
|
124 |
+
# if size < 450:
|
125 |
+
cv2.rectangle(im0_copy, (int(x1), int(y1)), (int(x2), int(y2)), COLOR, thickness=2)
|
126 |
+
for seg in data['segments'].values():
|
127 |
+
pt1 = (int(pose[seg[0], 0]), int(pose[seg[0], 1]))
|
128 |
+
pt2 = (int(pose[seg[1], 0]), int(pose[seg[1], 1]))
|
129 |
+
cv2.line(im0_copy, pt1, pt2, COLOR, SEG_THICK)
|
130 |
+
im0 = cv2.addWeighted(im0, ALPHA, im0_copy, 1 - ALPHA, gamma=0)
|
131 |
+
|
132 |
+
if i == 0:
|
133 |
+
t = time_sync() - t0
|
134 |
+
else:
|
135 |
+
t = time_sync() - t1
|
136 |
+
|
137 |
+
if args.fps:
|
138 |
+
s = FPS_TEXT_SIZE
|
139 |
+
cv2.putText(im0, '{:.1f} FPS'.format(1 / t), (5*s, 25*s),
|
140 |
+
cv2.FONT_HERSHEY_SIMPLEX, s, (255, 255, 255), thickness=2*s)
|
141 |
+
|
142 |
+
if args.gif:
|
143 |
+
gif_frames.append(cv2.resize(im0, dsize=None, fx=0.375, fy=0.375)[:, :, [2, 1, 0]])
|
144 |
+
elif not args.display:
|
145 |
+
writer.write(im0)
|
146 |
+
else:
|
147 |
+
cv2.imshow('', im0)
|
148 |
+
cv2.waitKey(1)
|
149 |
+
|
150 |
+
t1 = time_sync()
|
151 |
+
if i == n - 1:
|
152 |
+
break
|
153 |
+
|
154 |
+
cv2.destroyAllWindows()
|
155 |
+
cap.release()
|
156 |
+
if not args.display:
|
157 |
+
writer.release()
|
158 |
+
|
159 |
+
if args.gif:
|
160 |
+
print('Saving GIF...')
|
161 |
+
with imageio.get_writer(video_name + '.gif', mode="I", fps=fps) as writer:
|
162 |
+
for idx, frame in tqdm(enumerate(gif_frames)):
|
163 |
+
writer.append_data(frame)
|
164 |
+
|
165 |
+
|
166 |
+
|
demos/general.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from pathlib import Path
|
3 |
+
FILE = Path(__file__).absolute()
|
4 |
+
sys.path.append(FILE.parents[1].as_posix()) # add kapao/ to path
|
5 |
+
|
6 |
+
import argparse
|
7 |
+
from pytube import YouTube
|
8 |
+
import os.path as osp
|
9 |
+
from utils.torch_utils import select_device, time_sync
|
10 |
+
from utils.general import check_img_size
|
11 |
+
from utils.datasets import LoadImages
|
12 |
+
from models.experimental import attempt_load
|
13 |
+
import torch
|
14 |
+
import cv2
|
15 |
+
import numpy as np
|
16 |
+
import yaml
|
17 |
+
from tqdm import tqdm
|
18 |
+
import imageio
|
19 |
+
from val import run_nms, post_process_batch
|
20 |
+
|
21 |
+
|
22 |
+
VIDEO_NAME = 'Crazy Uptown Funk Flashmob in Sydney for sydney domains campaign.mp4'
|
23 |
+
URL = 'https://www.youtube.com/watch?v=2DiQUX11YaY&ab_channel=CrazyDomains'
|
24 |
+
COLOR = (255, 0, 255) # purple
|
25 |
+
ALPHA = 0.5
|
26 |
+
SEG_THICK = 3
|
27 |
+
FPS_TEXT_SIZE = 2
|
28 |
+
|
29 |
+
|
30 |
+
if __name__ == '__main__':
|
31 |
+
parser = argparse.ArgumentParser()
|
32 |
+
parser.add_argument('--vid', type=str, default='')
|
33 |
+
parser.add_argument('--data', type=str, default='data/coco-kp.yaml')
|
34 |
+
parser.add_argument('--imgsz', type=int, default=1280)
|
35 |
+
parser.add_argument('--weights', default='kapao_s_coco.pt')
|
36 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or cpu')
|
37 |
+
parser.add_argument('--half', action='store_true')
|
38 |
+
parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
|
39 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
40 |
+
parser.add_argument('--no-kp-dets', action='store_true', help='do not use keypoint objects')
|
41 |
+
parser.add_argument('--conf-thres-kp', type=float, default=0.5)
|
42 |
+
parser.add_argument('--conf-thres-kp-person', type=float, default=0.2)
|
43 |
+
parser.add_argument('--iou-thres-kp', type=float, default=0.45)
|
44 |
+
parser.add_argument('--overwrite-tol', type=int, default=50)
|
45 |
+
parser.add_argument('--scales', type=float, nargs='+', default=[1])
|
46 |
+
parser.add_argument('--flips', type=int, nargs='+', default=[-1])
|
47 |
+
parser.add_argument('--display', action='store_true', help='display inference results')
|
48 |
+
parser.add_argument('--fps', action='store_true', help='display fps')
|
49 |
+
parser.add_argument('--gif', action='store_true', help='create fig')
|
50 |
+
parser.add_argument('--start', type=int, default=68, help='start time (s)')
|
51 |
+
parser.add_argument('--end', type=int, default=98, help='end time (s)')
|
52 |
+
args = parser.parse_args()
|
53 |
+
|
54 |
+
with open(args.data) as f:
|
55 |
+
data = yaml.safe_load(f) # load data dict
|
56 |
+
|
57 |
+
# add inference settings to data dict
|
58 |
+
data['imgsz'] = args.imgsz
|
59 |
+
data['conf_thres'] = args.conf_thres
|
60 |
+
data['iou_thres'] = args.iou_thres
|
61 |
+
data['use_kp_dets'] = not args.no_kp_dets
|
62 |
+
data['conf_thres_kp'] = args.conf_thres_kp
|
63 |
+
data['iou_thres_kp'] = args.iou_thres_kp
|
64 |
+
data['conf_thres_kp_person'] = args.conf_thres_kp_person
|
65 |
+
data['overwrite_tol'] = args.overwrite_tol
|
66 |
+
data['scales'] = args.scales
|
67 |
+
data['flips'] = [None if f == -1 else f for f in args.flips]
|
68 |
+
|
69 |
+
if not osp.isfile(VIDEO_NAME):
|
70 |
+
yt = YouTube(URL)
|
71 |
+
# [print(s) for s in yt.streams]
|
72 |
+
stream = [s for s in yt.streams if s.itag == 136][0] # 720p, non-progressive
|
73 |
+
print('Downloading squash demo video...')
|
74 |
+
stream.download()
|
75 |
+
print('Done.')
|
76 |
+
|
77 |
+
device = select_device(args.device, batch_size=1)
|
78 |
+
print('Using device: {}'.format(device))
|
79 |
+
|
80 |
+
model = attempt_load(args.weights, map_location=device) # load FP32 model
|
81 |
+
half = args.half & (device.type != 'cpu')
|
82 |
+
if half: # half precision only supported on CUDA
|
83 |
+
model.half()
|
84 |
+
stride = int(model.stride.max()) # model stride
|
85 |
+
|
86 |
+
imgsz = check_img_size(args.imgsz, s=stride) # check image size
|
87 |
+
dataset = LoadImages('./{}'.format(args.vid), img_size=imgsz, stride=stride, auto=True)
|
88 |
+
|
89 |
+
if device.type != 'cpu':
|
90 |
+
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
91 |
+
|
92 |
+
cap = dataset.cap
|
93 |
+
cap.set(cv2.CAP_PROP_POS_MSEC, args.start * 1000)
|
94 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
95 |
+
n = int(fps * (args.end - args.start))
|
96 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
97 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
98 |
+
gif_frames = []
|
99 |
+
video_name = 'flash_mob_inference_{}'.format(osp.splitext(args.weights)[0])
|
100 |
+
|
101 |
+
if not args.display:
|
102 |
+
writer = cv2.VideoWriter(video_name + '.mp4',
|
103 |
+
cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
104 |
+
if not args.fps: # tqdm might slows down inference
|
105 |
+
dataset = tqdm(dataset, desc='Writing inference video', total=n)
|
106 |
+
|
107 |
+
t0 = time_sync()
|
108 |
+
for i, (path, img, im0, _) in enumerate(dataset):
|
109 |
+
img = torch.from_numpy(img).to(device)
|
110 |
+
img = img.half() if half else img.float() # uint8 to fp16/32
|
111 |
+
img = img / 255.0 # 0 - 255 to 0.0 - 1.0
|
112 |
+
if len(img.shape) == 3:
|
113 |
+
img = img[None] # expand for batch dim
|
114 |
+
|
115 |
+
out = model(img, augment=True, kp_flip=data['kp_flip'], scales=data['scales'], flips=data['flips'])[0]
|
116 |
+
person_dets, kp_dets = run_nms(data, out)
|
117 |
+
bboxes, poses, _, _, _ = post_process_batch(data, img, [], [[im0.shape[:2]]], person_dets, kp_dets)
|
118 |
+
|
119 |
+
im0_copy = im0.copy()
|
120 |
+
|
121 |
+
# DRAW POSES
|
122 |
+
for j, (bbox, pose) in enumerate(zip(bboxes, poses)):
|
123 |
+
x1, y1, x2, y2 = bbox
|
124 |
+
size = ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 0.5
|
125 |
+
# if size < 450:
|
126 |
+
cv2.rectangle(im0_copy, (int(x1), int(y1)), (int(x2), int(y2)), COLOR, thickness=2)
|
127 |
+
for seg in data['segments'].values():
|
128 |
+
pt1 = (int(pose[seg[0], 0]), int(pose[seg[0], 1]))
|
129 |
+
pt2 = (int(pose[seg[1], 0]), int(pose[seg[1], 1]))
|
130 |
+
cv2.line(im0_copy, pt1, pt2, COLOR, SEG_THICK)
|
131 |
+
im0 = cv2.addWeighted(im0, ALPHA, im0_copy, 1 - ALPHA, gamma=0)
|
132 |
+
|
133 |
+
if i == 0:
|
134 |
+
t = time_sync() - t0
|
135 |
+
else:
|
136 |
+
t = time_sync() - t1
|
137 |
+
|
138 |
+
if args.fps:
|
139 |
+
s = FPS_TEXT_SIZE
|
140 |
+
cv2.putText(im0, '{:.1f} FPS'.format(1 / t), (5*s, 25*s),
|
141 |
+
cv2.FONT_HERSHEY_SIMPLEX, s, (255, 255, 255), thickness=2*s)
|
142 |
+
|
143 |
+
if args.gif:
|
144 |
+
gif_frames.append(cv2.resize(im0, dsize=None, fx=0.375, fy=0.375)[:, :, [2, 1, 0]])
|
145 |
+
elif not args.display:
|
146 |
+
writer.write(im0)
|
147 |
+
else:
|
148 |
+
cv2.imshow('', im0)
|
149 |
+
cv2.waitKey(1)
|
150 |
+
|
151 |
+
t1 = time_sync()
|
152 |
+
if i == n - 1:
|
153 |
+
break
|
154 |
+
|
155 |
+
cv2.destroyAllWindows()
|
156 |
+
cap.release()
|
157 |
+
if not args.display:
|
158 |
+
writer.release()
|
159 |
+
|
160 |
+
if args.gif:
|
161 |
+
print('Saving GIF...')
|
162 |
+
with imageio.get_writer(video_name + '.gif', mode="I", fps=fps) as writer:
|
163 |
+
for idx, frame in tqdm(enumerate(gif_frames)):
|
164 |
+
writer.append_data(frame)
|
165 |
+
|
demos/squash.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from pathlib import Path
|
3 |
+
FILE = Path(__file__).absolute()
|
4 |
+
sys.path.append(FILE.parents[1].as_posix()) # add kapao/ to path
|
5 |
+
|
6 |
+
import argparse
|
7 |
+
from pytube import YouTube
|
8 |
+
import os.path as osp
|
9 |
+
from utils.torch_utils import select_device, time_sync
|
10 |
+
from utils.general import check_img_size
|
11 |
+
from utils.datasets import LoadImages
|
12 |
+
from models.experimental import attempt_load
|
13 |
+
import torch
|
14 |
+
import cv2
|
15 |
+
import numpy as np
|
16 |
+
import yaml
|
17 |
+
from tqdm import tqdm
|
18 |
+
import imageio
|
19 |
+
from val import run_nms, post_process_batch
|
20 |
+
|
21 |
+
|
22 |
+
VIDEO_NAME = 'Squash MegaRally 176 ReDux - Slow Mo Edition.mp4'
|
23 |
+
URL = 'https://www.youtube.com/watch?v=Dy62-eTNvY4&ab_channel=PSASQUASHTV'
|
24 |
+
|
25 |
+
GRAY = (200, 200, 200)
|
26 |
+
CROWD_THRES = 450 # max bbox size for crowd classification
|
27 |
+
CROWD_ALPHA = 0.5
|
28 |
+
CROWD_KP_SIZE = 2
|
29 |
+
CROWD_KP_THICK = 2
|
30 |
+
CROWD_SEG_THICK = 2
|
31 |
+
|
32 |
+
BLUE = (245, 140, 66)
|
33 |
+
ORANGE = (66, 140, 245)
|
34 |
+
PLAYER_ALPHA_BOX = 0.85
|
35 |
+
PLAYER_ALPHA_POSE = 0.3
|
36 |
+
PLAYER_KP_SIZE = 4
|
37 |
+
PLAYER_KP_THICK = 4
|
38 |
+
PLAYER_SEG_THICK = 4
|
39 |
+
FPS_TEXT_SIZE = 3
|
40 |
+
|
41 |
+
|
42 |
+
if __name__ == '__main__':
|
43 |
+
parser = argparse.ArgumentParser()
|
44 |
+
parser.add_argument('--data', type=str, default='data/coco-kp.yaml')
|
45 |
+
parser.add_argument('--imgsz', type=int, default=1280)
|
46 |
+
parser.add_argument('--weights', default='kapao_s_coco.pt')
|
47 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or cpu')
|
48 |
+
parser.add_argument('--half', action='store_true')
|
49 |
+
parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
|
50 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
51 |
+
parser.add_argument('--no-kp-dets', action='store_true', help='do not use keypoint objects')
|
52 |
+
parser.add_argument('--conf-thres-kp', type=float, default=0.5)
|
53 |
+
parser.add_argument('--conf-thres-kp-person', type=float, default=0.2)
|
54 |
+
parser.add_argument('--iou-thres-kp', type=float, default=0.45)
|
55 |
+
parser.add_argument('--overwrite-tol', type=int, default=50)
|
56 |
+
parser.add_argument('--scales', type=float, nargs='+', default=[1])
|
57 |
+
parser.add_argument('--flips', type=int, nargs='+', default=[-1])
|
58 |
+
parser.add_argument('--display', action='store_true', help='display inference results')
|
59 |
+
parser.add_argument('--fps', action='store_true', help='display fps')
|
60 |
+
parser.add_argument('--gif', action='store_true', help='create fig')
|
61 |
+
parser.add_argument('--start', type=int, default=20, help='start time (s)')
|
62 |
+
parser.add_argument('--end', type=int, default=80, help='end time (s)')
|
63 |
+
args = parser.parse_args()
|
64 |
+
|
65 |
+
with open(args.data) as f:
|
66 |
+
data = yaml.safe_load(f) # load data dict
|
67 |
+
|
68 |
+
# add inference settings to data dict
|
69 |
+
data['imgsz'] = args.imgsz
|
70 |
+
data['conf_thres'] = args.conf_thres
|
71 |
+
data['iou_thres'] = args.iou_thres
|
72 |
+
data['use_kp_dets'] = not args.no_kp_dets
|
73 |
+
data['conf_thres_kp'] = args.conf_thres_kp
|
74 |
+
data['iou_thres_kp'] = args.iou_thres_kp
|
75 |
+
data['conf_thres_kp_person'] = args.conf_thres_kp_person
|
76 |
+
data['overwrite_tol'] = args.overwrite_tol
|
77 |
+
data['scales'] = args.scales
|
78 |
+
data['flips'] = [None if f == -1 else f for f in args.flips]
|
79 |
+
|
80 |
+
if not osp.isfile(VIDEO_NAME):
|
81 |
+
yt = YouTube(URL)
|
82 |
+
# [print(s) for s in yt.streams]
|
83 |
+
stream = [s for s in yt.streams if s.itag == 137][0] # 1080p, non-progressive
|
84 |
+
print('Downloading squash demo video...')
|
85 |
+
stream.download()
|
86 |
+
print('Done.')
|
87 |
+
|
88 |
+
device = select_device(args.device, batch_size=1)
|
89 |
+
print('Using device: {}'.format(device))
|
90 |
+
|
91 |
+
model = attempt_load(args.weights, map_location=device) # load FP32 model
|
92 |
+
half = args.half & (device.type != 'cpu')
|
93 |
+
if half: # half precision only supported on CUDA
|
94 |
+
model.half()
|
95 |
+
stride = int(model.stride.max()) # model stride
|
96 |
+
|
97 |
+
imgsz = check_img_size(args.imgsz, s=stride) # check image size
|
98 |
+
dataset = LoadImages('./{}'.format(VIDEO_NAME), img_size=imgsz, stride=stride, auto=True)
|
99 |
+
|
100 |
+
if device.type != 'cpu':
|
101 |
+
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
102 |
+
|
103 |
+
cap = dataset.cap
|
104 |
+
cap.set(cv2.CAP_PROP_POS_MSEC, args.start * 1000)
|
105 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
106 |
+
n = int(fps * (args.end - args.start))
|
107 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
108 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
109 |
+
gif_frames = []
|
110 |
+
video_name = 'squash_inference_{}'.format(osp.splitext(args.weights)[0])
|
111 |
+
|
112 |
+
if not args.display:
|
113 |
+
writer = cv2.VideoWriter(video_name + '.mp4',
|
114 |
+
cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
115 |
+
if not args.fps: # tqdm might slows down inference
|
116 |
+
dataset = tqdm(dataset, desc='Writing inference video', total=n)
|
117 |
+
|
118 |
+
t0 = time_sync()
|
119 |
+
for i, (path, img, im0, _) in enumerate(dataset):
|
120 |
+
img = torch.from_numpy(img).to(device)
|
121 |
+
img = img.half() if half else img.float() # uint8 to fp16/32
|
122 |
+
img = img / 255.0 # 0 - 255 to 0.0 - 1.0
|
123 |
+
if len(img.shape) == 3:
|
124 |
+
img = img[None] # expand for batch dim
|
125 |
+
|
126 |
+
out = model(img, augment=True, kp_flip=data['kp_flip'], scales=data['scales'], flips=data['flips'])[0]
|
127 |
+
person_dets, kp_dets = run_nms(data, out)
|
128 |
+
bboxes, poses, _, _, _ = post_process_batch(data, img, [], [[im0.shape[:2]]], person_dets, kp_dets)
|
129 |
+
|
130 |
+
bboxes = np.array(bboxes)
|
131 |
+
poses = np.array(poses)
|
132 |
+
|
133 |
+
im0_copy = im0.copy()
|
134 |
+
player_idx = []
|
135 |
+
|
136 |
+
# DRAW CROWD POSES
|
137 |
+
for j, (bbox, pose) in enumerate(zip(bboxes, poses)):
|
138 |
+
x1, y1, x2, y2 = bbox
|
139 |
+
size = ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 0.5
|
140 |
+
if size < CROWD_THRES:
|
141 |
+
cv2.rectangle(im0_copy, (int(x1), int(y1)), (int(x2), int(y2)), GRAY, thickness=2)
|
142 |
+
for x, y, _ in pose[:5]:
|
143 |
+
cv2.circle(im0_copy, (int(x), int(y)), CROWD_KP_SIZE, GRAY, CROWD_KP_THICK)
|
144 |
+
for seg in data['segments'].values():
|
145 |
+
pt1 = (int(pose[seg[0], 0]), int(pose[seg[0], 1]))
|
146 |
+
pt2 = (int(pose[seg[1], 0]), int(pose[seg[1], 1]))
|
147 |
+
cv2.line(im0_copy, pt1, pt2, GRAY, CROWD_SEG_THICK)
|
148 |
+
else:
|
149 |
+
player_idx.append(j)
|
150 |
+
im0 = cv2.addWeighted(im0, CROWD_ALPHA, im0_copy, 1 - CROWD_ALPHA, gamma=0)
|
151 |
+
|
152 |
+
# DRAW PLAYER POSES
|
153 |
+
player_bboxes = bboxes[player_idx][:2]
|
154 |
+
player_poses = poses[player_idx][:2]
|
155 |
+
|
156 |
+
def draw_player_poses(im0, missing=-1):
|
157 |
+
for j, (bbox, pose, color) in enumerate(zip(
|
158 |
+
player_bboxes[[orange_player, blue_player]],
|
159 |
+
player_poses[[orange_player, blue_player]],
|
160 |
+
[ORANGE, BLUE])):
|
161 |
+
if j == missing:
|
162 |
+
continue
|
163 |
+
im0_copy = im0.copy()
|
164 |
+
x1, y1, x2, y2 = bbox
|
165 |
+
cv2.rectangle(im0_copy, (int(x1), int(y1)), (int(x2), int(y2)), color, thickness=-1)
|
166 |
+
im0 = cv2.addWeighted(im0, PLAYER_ALPHA_BOX, im0_copy, 1 - PLAYER_ALPHA_BOX, gamma=0)
|
167 |
+
im0_copy = im0.copy()
|
168 |
+
for x, y, _ in pose:
|
169 |
+
cv2.circle(im0_copy, (int(x), int(y)), PLAYER_KP_SIZE, color, PLAYER_KP_THICK)
|
170 |
+
for seg in data['segments'].values():
|
171 |
+
pt1 = (int(pose[seg[0], 0]), int(pose[seg[0], 1]))
|
172 |
+
pt2 = (int(pose[seg[1], 0]), int(pose[seg[1], 1]))
|
173 |
+
cv2.line(im0_copy, pt1, pt2, color, PLAYER_SEG_THICK)
|
174 |
+
im0 = cv2.addWeighted(im0, PLAYER_ALPHA_POSE, im0_copy, 1 - PLAYER_ALPHA_POSE, gamma=0)
|
175 |
+
return im0
|
176 |
+
|
177 |
+
if i == 0:
|
178 |
+
# orange player on left at start
|
179 |
+
orange_player = np.argmin(player_bboxes[:, 0])
|
180 |
+
blue_player = int(not orange_player)
|
181 |
+
im0 = draw_player_poses(im0)
|
182 |
+
else:
|
183 |
+
# simple player tracking based on frame-to-frame pose difference
|
184 |
+
dist = []
|
185 |
+
for pose in poses_last:
|
186 |
+
dist.append(np.mean(np.linalg.norm(player_poses[0, :, :2] - pose[:, :2], axis=-1)))
|
187 |
+
if np.argmin(dist) == 0:
|
188 |
+
orange_player = 0
|
189 |
+
else:
|
190 |
+
orange_player = 1
|
191 |
+
blue_player = int(not orange_player)
|
192 |
+
|
193 |
+
# if only one player detected, find which player is missing
|
194 |
+
missing = -1
|
195 |
+
if len(player_poses) == 1:
|
196 |
+
if orange_player == 0: # missing blue player
|
197 |
+
player_poses = np.concatenate((player_poses, poses_last[1:]), axis=0)
|
198 |
+
player_bboxes = np.concatenate((player_bboxes, bboxes_last[1:]), axis=0)
|
199 |
+
missing = 1
|
200 |
+
else: # missing orange player
|
201 |
+
player_poses = np.concatenate((player_poses, poses_last[:1]), axis=0)
|
202 |
+
player_bboxes = np.concatenate((player_bboxes, bboxes_last[:1]), axis=0)
|
203 |
+
missing = 0
|
204 |
+
im0 = draw_player_poses(im0, missing)
|
205 |
+
|
206 |
+
bboxes_last = player_bboxes[[orange_player, blue_player]]
|
207 |
+
poses_last = player_poses[[orange_player, blue_player]]
|
208 |
+
|
209 |
+
if i == 0:
|
210 |
+
t = time_sync() - t0
|
211 |
+
else:
|
212 |
+
t = time_sync() - t1
|
213 |
+
|
214 |
+
if args.fps:
|
215 |
+
s = FPS_TEXT_SIZE
|
216 |
+
cv2.putText(im0, '{:.1f} FPS'.format(1 / t), (5*s, 25*s),
|
217 |
+
cv2.FONT_HERSHEY_SIMPLEX, s, (255, 255, 255), thickness=2*s)
|
218 |
+
|
219 |
+
if args.gif:
|
220 |
+
gif_frames.append(cv2.resize(im0, dsize=None, fx=0.25, fy=0.25)[:, :, [2, 1, 0]])
|
221 |
+
elif not args.display:
|
222 |
+
writer.write(im0)
|
223 |
+
else:
|
224 |
+
cv2.imshow('', cv2.resize(im0, dsize=None, fx=0.5, fy=0.5))
|
225 |
+
cv2.waitKey(1)
|
226 |
+
|
227 |
+
t1 = time_sync()
|
228 |
+
if i == n - 1:
|
229 |
+
break
|
230 |
+
|
231 |
+
cv2.destroyAllWindows()
|
232 |
+
cap.release()
|
233 |
+
if not args.display:
|
234 |
+
writer.release()
|
235 |
+
|
236 |
+
if args.gif:
|
237 |
+
print('Saving GIF...')
|
238 |
+
with imageio.get_writer(video_name + '.gif', mode="I", fps=fps) as writer:
|
239 |
+
for idx, frame in tqdm(enumerate(gif_frames)):
|
240 |
+
writer.append_data(frame)
|
241 |
+
|
242 |
+
|
243 |
+
|
models/common.py
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Common modules
|
4 |
+
"""
|
5 |
+
|
6 |
+
import logging
|
7 |
+
import math
|
8 |
+
import warnings
|
9 |
+
from copy import copy
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
import requests
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
from PIL import Image
|
18 |
+
from torch.cuda import amp
|
19 |
+
|
20 |
+
from utils.datasets import exif_transpose, letterbox
|
21 |
+
from utils.general import colorstr, increment_path, is_ascii, make_divisible, non_max_suppression, save_one_box, \
|
22 |
+
scale_coords, xyxy2xywh
|
23 |
+
from utils.plots import Annotator, colors
|
24 |
+
from utils.torch_utils import time_sync
|
25 |
+
|
26 |
+
LOGGER = logging.getLogger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
def autopad(k, p=None): # kernel, padding
|
30 |
+
# Pad to 'same'
|
31 |
+
if p is None:
|
32 |
+
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
33 |
+
return p
|
34 |
+
|
35 |
+
|
36 |
+
class Conv(nn.Module):
|
37 |
+
# Standard convolution
|
38 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
39 |
+
super().__init__()
|
40 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
41 |
+
self.bn = nn.BatchNorm2d(c2)
|
42 |
+
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
return self.act(self.bn(self.conv(x)))
|
46 |
+
|
47 |
+
def forward_fuse(self, x):
|
48 |
+
return self.act(self.conv(x))
|
49 |
+
|
50 |
+
|
51 |
+
class DWConv(Conv):
|
52 |
+
# Depth-wise convolution class
|
53 |
+
def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
54 |
+
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
55 |
+
|
56 |
+
|
57 |
+
class TransformerLayer(nn.Module):
|
58 |
+
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
|
59 |
+
def __init__(self, c, num_heads):
|
60 |
+
super().__init__()
|
61 |
+
self.q = nn.Linear(c, c, bias=False)
|
62 |
+
self.k = nn.Linear(c, c, bias=False)
|
63 |
+
self.v = nn.Linear(c, c, bias=False)
|
64 |
+
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
65 |
+
self.fc1 = nn.Linear(c, c, bias=False)
|
66 |
+
self.fc2 = nn.Linear(c, c, bias=False)
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
70 |
+
x = self.fc2(self.fc1(x)) + x
|
71 |
+
return x
|
72 |
+
|
73 |
+
|
74 |
+
class TransformerBlock(nn.Module):
|
75 |
+
# Vision Transformer https://arxiv.org/abs/2010.11929
|
76 |
+
def __init__(self, c1, c2, num_heads, num_layers):
|
77 |
+
super().__init__()
|
78 |
+
self.conv = None
|
79 |
+
if c1 != c2:
|
80 |
+
self.conv = Conv(c1, c2)
|
81 |
+
self.linear = nn.Linear(c2, c2) # learnable position embedding
|
82 |
+
self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)])
|
83 |
+
self.c2 = c2
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
if self.conv is not None:
|
87 |
+
x = self.conv(x)
|
88 |
+
b, _, w, h = x.shape
|
89 |
+
p = x.flatten(2).unsqueeze(0).transpose(0, 3).squeeze(3)
|
90 |
+
return self.tr(p + self.linear(p)).unsqueeze(3).transpose(0, 3).reshape(b, self.c2, w, h)
|
91 |
+
|
92 |
+
|
93 |
+
class Bottleneck(nn.Module):
|
94 |
+
# Standard bottleneck
|
95 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
96 |
+
super().__init__()
|
97 |
+
c_ = int(c2 * e) # hidden channels
|
98 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
99 |
+
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
100 |
+
self.add = shortcut and c1 == c2
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
104 |
+
|
105 |
+
|
106 |
+
class BottleneckCSP(nn.Module):
|
107 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
108 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
109 |
+
super().__init__()
|
110 |
+
c_ = int(c2 * e) # hidden channels
|
111 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
112 |
+
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
113 |
+
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
114 |
+
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
115 |
+
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
116 |
+
self.act = nn.LeakyReLU(0.1, inplace=True)
|
117 |
+
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
y1 = self.cv3(self.m(self.cv1(x)))
|
121 |
+
y2 = self.cv2(x)
|
122 |
+
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
|
123 |
+
|
124 |
+
|
125 |
+
class C3(nn.Module):
|
126 |
+
# CSP Bottleneck with 3 convolutions
|
127 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
128 |
+
super().__init__()
|
129 |
+
c_ = int(c2 * e) # hidden channels
|
130 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
131 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
132 |
+
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
|
133 |
+
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
134 |
+
# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
|
138 |
+
|
139 |
+
|
140 |
+
class C3TR(C3):
|
141 |
+
# C3 module with TransformerBlock()
|
142 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
143 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
144 |
+
c_ = int(c2 * e)
|
145 |
+
self.m = TransformerBlock(c_, c_, 4, n)
|
146 |
+
|
147 |
+
|
148 |
+
class C3SPP(C3):
|
149 |
+
# C3 module with SPP()
|
150 |
+
def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
|
151 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
152 |
+
c_ = int(c2 * e)
|
153 |
+
self.m = SPP(c_, c_, k)
|
154 |
+
|
155 |
+
|
156 |
+
class C3Ghost(C3):
|
157 |
+
# C3 module with GhostBottleneck()
|
158 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
159 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
160 |
+
c_ = int(c2 * e) # hidden channels
|
161 |
+
self.m = nn.Sequential(*[GhostBottleneck(c_, c_) for _ in range(n)])
|
162 |
+
|
163 |
+
|
164 |
+
class SPP(nn.Module):
|
165 |
+
# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
|
166 |
+
def __init__(self, c1, c2, k=(5, 9, 13)):
|
167 |
+
super().__init__()
|
168 |
+
c_ = c1 // 2 # hidden channels
|
169 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
170 |
+
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
171 |
+
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
172 |
+
|
173 |
+
def forward(self, x):
|
174 |
+
x = self.cv1(x)
|
175 |
+
with warnings.catch_warnings():
|
176 |
+
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
177 |
+
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
178 |
+
|
179 |
+
|
180 |
+
class SPPF(nn.Module):
|
181 |
+
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
|
182 |
+
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
183 |
+
super().__init__()
|
184 |
+
c_ = c1 // 2 # hidden channels
|
185 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
186 |
+
self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
187 |
+
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
188 |
+
|
189 |
+
def forward(self, x):
|
190 |
+
x = self.cv1(x)
|
191 |
+
with warnings.catch_warnings():
|
192 |
+
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
193 |
+
y1 = self.m(x)
|
194 |
+
y2 = self.m(y1)
|
195 |
+
return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
|
196 |
+
|
197 |
+
|
198 |
+
class Focus(nn.Module):
|
199 |
+
# Focus wh information into c-space
|
200 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
201 |
+
super().__init__()
|
202 |
+
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
203 |
+
# self.contract = Contract(gain=2)
|
204 |
+
|
205 |
+
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
206 |
+
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
|
207 |
+
# return self.conv(self.contract(x))
|
208 |
+
|
209 |
+
|
210 |
+
class GhostConv(nn.Module):
|
211 |
+
# Ghost Convolution https://github.com/huawei-noah/ghostnet
|
212 |
+
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
213 |
+
super().__init__()
|
214 |
+
c_ = c2 // 2 # hidden channels
|
215 |
+
self.cv1 = Conv(c1, c_, k, s, None, g, act)
|
216 |
+
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
|
217 |
+
|
218 |
+
def forward(self, x):
|
219 |
+
y = self.cv1(x)
|
220 |
+
return torch.cat([y, self.cv2(y)], 1)
|
221 |
+
|
222 |
+
|
223 |
+
class GhostBottleneck(nn.Module):
|
224 |
+
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
225 |
+
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
226 |
+
super().__init__()
|
227 |
+
c_ = c2 // 2
|
228 |
+
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
|
229 |
+
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
230 |
+
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
231 |
+
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
|
232 |
+
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
233 |
+
|
234 |
+
def forward(self, x):
|
235 |
+
return self.conv(x) + self.shortcut(x)
|
236 |
+
|
237 |
+
|
238 |
+
class Contract(nn.Module):
|
239 |
+
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
|
240 |
+
def __init__(self, gain=2):
|
241 |
+
super().__init__()
|
242 |
+
self.gain = gain
|
243 |
+
|
244 |
+
def forward(self, x):
|
245 |
+
b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
|
246 |
+
s = self.gain
|
247 |
+
x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
|
248 |
+
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
249 |
+
return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
|
250 |
+
|
251 |
+
|
252 |
+
class Expand(nn.Module):
|
253 |
+
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
|
254 |
+
def __init__(self, gain=2):
|
255 |
+
super().__init__()
|
256 |
+
self.gain = gain
|
257 |
+
|
258 |
+
def forward(self, x):
|
259 |
+
b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
260 |
+
s = self.gain
|
261 |
+
x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
|
262 |
+
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
263 |
+
return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
|
264 |
+
|
265 |
+
|
266 |
+
class Concat(nn.Module):
|
267 |
+
# Concatenate a list of tensors along dimension
|
268 |
+
def __init__(self, dimension=1):
|
269 |
+
super().__init__()
|
270 |
+
self.d = dimension
|
271 |
+
|
272 |
+
def forward(self, x):
|
273 |
+
return torch.cat(x, self.d)
|
274 |
+
|
275 |
+
|
276 |
+
class AutoShape(nn.Module):
|
277 |
+
# YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
278 |
+
conf = 0.25 # NMS confidence threshold
|
279 |
+
iou = 0.45 # NMS IoU threshold
|
280 |
+
classes = None # (optional list) filter by class
|
281 |
+
max_det = 1000 # maximum number of detections per image
|
282 |
+
|
283 |
+
def __init__(self, model):
|
284 |
+
super().__init__()
|
285 |
+
self.model = model.eval()
|
286 |
+
|
287 |
+
def autoshape(self):
|
288 |
+
LOGGER.info('AutoShape already enabled, skipping... ') # model already converted to model.autoshape()
|
289 |
+
return self
|
290 |
+
|
291 |
+
@torch.no_grad()
|
292 |
+
def forward(self, imgs, size=640, augment=False, profile=False):
|
293 |
+
# Inference from various sources. For height=640, width=1280, RGB images example inputs are:
|
294 |
+
# file: imgs = 'data/images/zidane.jpg' # str or PosixPath
|
295 |
+
# URI: = 'https://ultralytics.com/images/zidane.jpg'
|
296 |
+
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
297 |
+
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
|
298 |
+
# numpy: = np.zeros((640,1280,3)) # HWC
|
299 |
+
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
300 |
+
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
301 |
+
|
302 |
+
t = [time_sync()]
|
303 |
+
p = next(self.model.parameters()) # for device and type
|
304 |
+
if isinstance(imgs, torch.Tensor): # torch
|
305 |
+
with amp.autocast(enabled=p.device.type != 'cpu'):
|
306 |
+
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
307 |
+
|
308 |
+
# Pre-process
|
309 |
+
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
|
310 |
+
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
311 |
+
for i, im in enumerate(imgs):
|
312 |
+
f = f'image{i}' # filename
|
313 |
+
if isinstance(im, (str, Path)): # filename or uri
|
314 |
+
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
|
315 |
+
im = np.asarray(exif_transpose(im))
|
316 |
+
elif isinstance(im, Image.Image): # PIL Image
|
317 |
+
im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
|
318 |
+
files.append(Path(f).with_suffix('.jpg').name)
|
319 |
+
if im.shape[0] < 5: # image in CHW
|
320 |
+
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
321 |
+
im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input
|
322 |
+
s = im.shape[:2] # HWC
|
323 |
+
shape0.append(s) # image shape
|
324 |
+
g = (size / max(s)) # gain
|
325 |
+
shape1.append([y * g for y in s])
|
326 |
+
imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
327 |
+
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
|
328 |
+
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
|
329 |
+
x = np.stack(x, 0) if n > 1 else x[0][None] # stack
|
330 |
+
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
|
331 |
+
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
|
332 |
+
t.append(time_sync())
|
333 |
+
|
334 |
+
with amp.autocast(enabled=p.device.type != 'cpu'):
|
335 |
+
# Inference
|
336 |
+
y = self.model(x, augment, profile)[0] # forward
|
337 |
+
t.append(time_sync())
|
338 |
+
|
339 |
+
# Post-process
|
340 |
+
y = non_max_suppression(y, self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det) # NMS
|
341 |
+
for i in range(n):
|
342 |
+
scale_coords(shape1, y[i][:, :4], shape0[i])
|
343 |
+
|
344 |
+
t.append(time_sync())
|
345 |
+
return Detections(imgs, y, files, t, self.names, x.shape)
|
346 |
+
|
347 |
+
|
348 |
+
class Detections:
|
349 |
+
# YOLOv5 detections class for inference results
|
350 |
+
def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
|
351 |
+
super().__init__()
|
352 |
+
d = pred[0].device # device
|
353 |
+
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
|
354 |
+
self.imgs = imgs # list of images as numpy arrays
|
355 |
+
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
356 |
+
self.names = names # class names
|
357 |
+
self.ascii = is_ascii(names) # names are ascii (use PIL for UTF-8)
|
358 |
+
self.files = files # image filenames
|
359 |
+
self.xyxy = pred # xyxy pixels
|
360 |
+
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
361 |
+
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
362 |
+
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
363 |
+
self.n = len(self.pred) # number of images (batch size)
|
364 |
+
self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
|
365 |
+
self.s = shape # inference BCHW shape
|
366 |
+
|
367 |
+
def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
|
368 |
+
for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
|
369 |
+
str = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '
|
370 |
+
if pred.shape[0]:
|
371 |
+
for c in pred[:, -1].unique():
|
372 |
+
n = (pred[:, -1] == c).sum() # detections per class
|
373 |
+
str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
374 |
+
if show or save or render or crop:
|
375 |
+
annotator = Annotator(im, pil=not self.ascii)
|
376 |
+
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
377 |
+
label = f'{self.names[int(cls)]} {conf:.2f}'
|
378 |
+
if crop:
|
379 |
+
save_one_box(box, im, file=save_dir / 'crops' / self.names[int(cls)] / self.files[i])
|
380 |
+
else: # all others
|
381 |
+
annotator.box_label(box, label, color=colors(cls))
|
382 |
+
im = annotator.im
|
383 |
+
else:
|
384 |
+
str += '(no detections)'
|
385 |
+
|
386 |
+
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
|
387 |
+
if pprint:
|
388 |
+
LOGGER.info(str.rstrip(', '))
|
389 |
+
if show:
|
390 |
+
im.show(self.files[i]) # show
|
391 |
+
if save:
|
392 |
+
f = self.files[i]
|
393 |
+
im.save(save_dir / f) # save
|
394 |
+
if i == self.n - 1:
|
395 |
+
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
396 |
+
if render:
|
397 |
+
self.imgs[i] = np.asarray(im)
|
398 |
+
|
399 |
+
def print(self):
|
400 |
+
self.display(pprint=True) # print results
|
401 |
+
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
|
402 |
+
self.t)
|
403 |
+
|
404 |
+
def show(self):
|
405 |
+
self.display(show=True) # show results
|
406 |
+
|
407 |
+
def save(self, save_dir='runs/detect/exp'):
|
408 |
+
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
|
409 |
+
self.display(save=True, save_dir=save_dir) # save results
|
410 |
+
|
411 |
+
def crop(self, save_dir='runs/detect/exp'):
|
412 |
+
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
|
413 |
+
self.display(crop=True, save_dir=save_dir) # crop results
|
414 |
+
LOGGER.info(f'Saved results to {save_dir}\n')
|
415 |
+
|
416 |
+
def render(self):
|
417 |
+
self.display(render=True) # render results
|
418 |
+
return self.imgs
|
419 |
+
|
420 |
+
def pandas(self):
|
421 |
+
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
422 |
+
new = copy(self) # return copy
|
423 |
+
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
424 |
+
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
|
425 |
+
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
|
426 |
+
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
427 |
+
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
428 |
+
return new
|
429 |
+
|
430 |
+
def tolist(self):
|
431 |
+
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
432 |
+
x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)]
|
433 |
+
for d in x:
|
434 |
+
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
435 |
+
setattr(d, k, getattr(d, k)[0]) # pop out of list
|
436 |
+
return x
|
437 |
+
|
438 |
+
def __len__(self):
|
439 |
+
return self.n
|
440 |
+
|
441 |
+
|
442 |
+
class Classify(nn.Module):
|
443 |
+
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
444 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
445 |
+
super().__init__()
|
446 |
+
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
|
447 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
|
448 |
+
self.flat = nn.Flatten()
|
449 |
+
|
450 |
+
def forward(self, x):
|
451 |
+
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
|
452 |
+
return self.flat(self.conv(z)) # flatten to x(b,c2)
|
models/experimental.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Experimental modules
|
4 |
+
"""
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from models.common import Conv
|
11 |
+
from utils.downloads import attempt_download
|
12 |
+
|
13 |
+
|
14 |
+
class CrossConv(nn.Module):
|
15 |
+
# Cross Convolution Downsample
|
16 |
+
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
17 |
+
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
18 |
+
super().__init__()
|
19 |
+
c_ = int(c2 * e) # hidden channels
|
20 |
+
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
21 |
+
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
22 |
+
self.add = shortcut and c1 == c2
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
26 |
+
|
27 |
+
|
28 |
+
class Sum(nn.Module):
|
29 |
+
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
30 |
+
def __init__(self, n, weight=False): # n: number of inputs
|
31 |
+
super().__init__()
|
32 |
+
self.weight = weight # apply weights boolean
|
33 |
+
self.iter = range(n - 1) # iter object
|
34 |
+
if weight:
|
35 |
+
self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
y = x[0] # no weight
|
39 |
+
if self.weight:
|
40 |
+
w = torch.sigmoid(self.w) * 2
|
41 |
+
for i in self.iter:
|
42 |
+
y = y + x[i + 1] * w[i]
|
43 |
+
else:
|
44 |
+
for i in self.iter:
|
45 |
+
y = y + x[i + 1]
|
46 |
+
return y
|
47 |
+
|
48 |
+
|
49 |
+
class MixConv2d(nn.Module):
|
50 |
+
# Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
|
51 |
+
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
|
52 |
+
super().__init__()
|
53 |
+
groups = len(k)
|
54 |
+
if equal_ch: # equal c_ per group
|
55 |
+
i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
|
56 |
+
c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
|
57 |
+
else: # equal weight.numel() per group
|
58 |
+
b = [c2] + [0] * groups
|
59 |
+
a = np.eye(groups + 1, groups, k=-1)
|
60 |
+
a -= np.roll(a, 1, axis=1)
|
61 |
+
a *= np.array(k) ** 2
|
62 |
+
a[0] = 1
|
63 |
+
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
64 |
+
|
65 |
+
self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
|
66 |
+
self.bn = nn.BatchNorm2d(c2)
|
67 |
+
self.act = nn.LeakyReLU(0.1, inplace=True)
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
|
71 |
+
|
72 |
+
|
73 |
+
class Ensemble(nn.ModuleList):
|
74 |
+
# Ensemble of models
|
75 |
+
def __init__(self):
|
76 |
+
super().__init__()
|
77 |
+
|
78 |
+
def forward(self, x, augment=False, profile=False, visualize=False):
|
79 |
+
y = []
|
80 |
+
for module in self:
|
81 |
+
y.append(module(x, augment, profile, visualize)[0])
|
82 |
+
# y = torch.stack(y).max(0)[0] # max ensemble
|
83 |
+
# y = torch.stack(y).mean(0) # mean ensemble
|
84 |
+
y = torch.cat(y, 1) # nms ensemble
|
85 |
+
return y, None # inference, train output
|
86 |
+
|
87 |
+
|
88 |
+
def attempt_load(weights, map_location=None, inplace=True, fuse=True):
|
89 |
+
from models.yolo import Detect, Model
|
90 |
+
|
91 |
+
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
92 |
+
model = Ensemble()
|
93 |
+
for w in weights if isinstance(weights, list) else [weights]:
|
94 |
+
ckpt = torch.load(attempt_download(w), map_location=map_location) # load
|
95 |
+
if fuse:
|
96 |
+
model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
|
97 |
+
else:
|
98 |
+
model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().eval()) # without layer fuse
|
99 |
+
|
100 |
+
|
101 |
+
# Compatibility updates
|
102 |
+
for m in model.modules():
|
103 |
+
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
|
104 |
+
m.inplace = inplace # pytorch 1.7.0 compatibility
|
105 |
+
elif type(m) is Conv:
|
106 |
+
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
107 |
+
|
108 |
+
if len(model) == 1:
|
109 |
+
return model[-1] # return model
|
110 |
+
else:
|
111 |
+
print(f'Ensemble created with {weights}\n')
|
112 |
+
for k in ['names']:
|
113 |
+
setattr(model, k, getattr(model[-1], k))
|
114 |
+
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
|
115 |
+
return model # return ensemble
|
models/yolo.py
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
YOLO-specific modules
|
4 |
+
|
5 |
+
Usage:
|
6 |
+
$ python path/to/models/yolo.py --cfg yolov5s.yaml
|
7 |
+
"""
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
import sys
|
11 |
+
from copy import deepcopy
|
12 |
+
from pathlib import Path
|
13 |
+
|
14 |
+
FILE = Path(__file__).absolute()
|
15 |
+
sys.path.append(FILE.parents[1].as_posix()) # add yolov5/ to path
|
16 |
+
|
17 |
+
from models.common import *
|
18 |
+
from models.experimental import *
|
19 |
+
from utils.autoanchor import check_anchor_order
|
20 |
+
from utils.general import make_divisible, check_file, set_logging
|
21 |
+
from utils.plots import feature_visualization
|
22 |
+
from utils.torch_utils import time_sync, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
|
23 |
+
select_device, copy_attr
|
24 |
+
|
25 |
+
try:
|
26 |
+
import thop # for FLOPs computation
|
27 |
+
except ImportError:
|
28 |
+
thop = None
|
29 |
+
|
30 |
+
LOGGER = logging.getLogger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
class Detect(nn.Module):
|
34 |
+
stride = None # strides computed during build
|
35 |
+
onnx_dynamic = False # ONNX export parameter
|
36 |
+
|
37 |
+
def __init__(self, nc=80, anchors=(), ch=(), inplace=True, num_coords=0): # detection layer
|
38 |
+
super().__init__()
|
39 |
+
self.nc = nc # number of classes
|
40 |
+
self.no = nc + 5 # number of outputs per anchor
|
41 |
+
self.nl = len(anchors) # number of detection layers
|
42 |
+
self.na = len(anchors[0]) // 2 # number of anchors
|
43 |
+
self.grid = [torch.zeros(1)] * self.nl # init grid
|
44 |
+
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
45 |
+
self.register_buffer('anchors', a) # shape(nl,na,2)
|
46 |
+
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
47 |
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
48 |
+
self.inplace = inplace # use in-place ops (e.g. slice assignment)
|
49 |
+
self.num_coords = num_coords
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
z = [] # inference output
|
53 |
+
for i in range(self.nl):
|
54 |
+
x[i] = self.m[i](x[i]) # conv
|
55 |
+
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
56 |
+
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
57 |
+
|
58 |
+
if not self.training: # inference
|
59 |
+
if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
|
60 |
+
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
61 |
+
|
62 |
+
y = x[i].sigmoid()
|
63 |
+
if self.inplace:
|
64 |
+
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
65 |
+
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
66 |
+
|
67 |
+
if hasattr(self, 'num_coords') and self.num_coords:
|
68 |
+
y[..., -self.num_coords:] = y[..., -self.num_coords:] * 4. - 2.
|
69 |
+
y[..., -self.num_coords:] *= self.anchor_grid[i].repeat((1, 1, 1, 1, self.num_coords // 2))
|
70 |
+
y[..., -self.num_coords:] += (self.grid[i] * self.stride[i]).repeat((1, 1, 1, 1, self.num_coords // 2))
|
71 |
+
|
72 |
+
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
|
73 |
+
xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
74 |
+
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) # wh
|
75 |
+
y = torch.cat((xy, wh, y[..., 4:]), -1)
|
76 |
+
z.append(y.view(bs, -1, self.no))
|
77 |
+
# z.append(y)
|
78 |
+
|
79 |
+
return x if self.training else (torch.cat(z, 1), x)
|
80 |
+
# return x if self.training else (z, x)
|
81 |
+
|
82 |
+
@staticmethod
|
83 |
+
def _make_grid(nx=20, ny=20):
|
84 |
+
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
85 |
+
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
86 |
+
|
87 |
+
|
88 |
+
class Model(nn.Module):
|
89 |
+
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None, num_coords=0, autobalance=False): # model, input channels, number of classes
|
90 |
+
super().__init__()
|
91 |
+
if isinstance(cfg, dict):
|
92 |
+
self.yaml = cfg # model dict
|
93 |
+
else: # is *.yaml
|
94 |
+
import yaml # for torch hub
|
95 |
+
self.yaml_file = Path(cfg).name
|
96 |
+
with open(cfg) as f:
|
97 |
+
self.yaml = yaml.safe_load(f) # model dict
|
98 |
+
|
99 |
+
# Define model
|
100 |
+
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
101 |
+
if nc + num_coords and nc + num_coords != self.yaml['nc']:
|
102 |
+
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc + num_coords}")
|
103 |
+
self.yaml['nc'] = nc + num_coords # override yaml value
|
104 |
+
if anchors:
|
105 |
+
LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
|
106 |
+
self.yaml['anchors'] = round(anchors) # override yaml value
|
107 |
+
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
108 |
+
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
109 |
+
self.inplace = self.yaml.get('inplace', True)
|
110 |
+
self.num_coords = num_coords
|
111 |
+
if autobalance:
|
112 |
+
self.loss_coeffs = nn.Parameter(torch.zeros(2))
|
113 |
+
# LOGGER.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
|
114 |
+
|
115 |
+
# Build strides, anchors
|
116 |
+
m = self.model[-1] # Detect()
|
117 |
+
if isinstance(m, Detect):
|
118 |
+
s = 256 # 2x min stride
|
119 |
+
m.inplace = self.inplace
|
120 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
121 |
+
m.anchors /= m.stride.view(-1, 1, 1)
|
122 |
+
check_anchor_order(m)
|
123 |
+
self.stride = m.stride
|
124 |
+
m.num_coords = self.num_coords
|
125 |
+
m.nc = nc
|
126 |
+
self._initialize_biases() # only run once
|
127 |
+
# LOGGER.info('Strides: %s' % m.stride.tolist())
|
128 |
+
|
129 |
+
# Init weights, biases
|
130 |
+
initialize_weights(self)
|
131 |
+
self.info()
|
132 |
+
LOGGER.info('')
|
133 |
+
|
134 |
+
def forward(self, x, augment=False, profile=False, visualize=False, kp_flip=None,
|
135 |
+
scales=[0.5, 1, 2], flips=[None, 3, None]):
|
136 |
+
if augment:
|
137 |
+
return self.forward_augment(x, kp_flip, s=scales, f=flips) # augmented inference, None
|
138 |
+
return self.forward_once(x, profile, visualize) # single-scale inference, train
|
139 |
+
|
140 |
+
def forward_augment(self, x, kp_flip, s=[0.5, 1, 2], f=[None, 3, None]):
|
141 |
+
img_size = x.shape[-2:] # height, width
|
142 |
+
# s = [1, 0.83, 0.67] # scales
|
143 |
+
# f = [None, 3, None] # flips (2-ud, 3-lr)
|
144 |
+
y = [] # outputs
|
145 |
+
train_out = None
|
146 |
+
for si, fi in zip(s, f):
|
147 |
+
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
148 |
+
yi, train_out_i = self.forward_once(xi) # forward
|
149 |
+
if si == 1 and fi is None:
|
150 |
+
train_out = train_out_i
|
151 |
+
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
152 |
+
yi = self._descale_pred(yi, fi, si, img_size, kp_flip)
|
153 |
+
y.append(yi)
|
154 |
+
return torch.cat(y, 1), train_out # augmented inference, train
|
155 |
+
|
156 |
+
def forward_once(self, x, profile=False, visualize=False):
|
157 |
+
y, dt = [], [] # outputs
|
158 |
+
for m in self.model:
|
159 |
+
if m.f != -1: # if not from previous layer
|
160 |
+
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
161 |
+
|
162 |
+
if profile:
|
163 |
+
c = isinstance(m, Detect) # copy input as inplace fix
|
164 |
+
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
|
165 |
+
t = time_sync()
|
166 |
+
for _ in range(10):
|
167 |
+
m(x.copy() if c else x)
|
168 |
+
dt.append((time_sync() - t) * 100)
|
169 |
+
if m == self.model[0]:
|
170 |
+
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}")
|
171 |
+
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
|
172 |
+
|
173 |
+
x = m(x) # run
|
174 |
+
y.append(x if m.i in self.save else None) # save output
|
175 |
+
|
176 |
+
if visualize:
|
177 |
+
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
178 |
+
|
179 |
+
if profile:
|
180 |
+
LOGGER.info('%.1fms total' % sum(dt))
|
181 |
+
return x
|
182 |
+
|
183 |
+
def _descale_pred(self, p, flips, scale, img_size, kp_flip):
|
184 |
+
# de-scale predictions following augmented inference (inverse operation)
|
185 |
+
if self.inplace:
|
186 |
+
p[..., :4] /= scale # de-scale bbox
|
187 |
+
if kp_flip:
|
188 |
+
p[..., -self.num_coords:] /= scale # de-scale kp
|
189 |
+
if flips == 2:
|
190 |
+
p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
|
191 |
+
elif flips == 3:
|
192 |
+
p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
|
193 |
+
if kp_flip:
|
194 |
+
p[..., 6:6 + self.nc - 1] = p[..., 6:6 + self.nc - 1][..., kp_flip] # de-flip bbox conf
|
195 |
+
p[..., -self.num_coords::2] = img_size[1] - p[..., -self.num_coords::2] # de-flip kp x
|
196 |
+
p[..., -self.num_coords::2] = p[..., -self.num_coords::2][..., kp_flip] # swap lr kp (x)
|
197 |
+
p[..., -self.num_coords + 1::2] = p[..., -self.num_coords + 1::2][..., kp_flip] # swap lr kp (y)
|
198 |
+
|
199 |
+
else:
|
200 |
+
x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
|
201 |
+
if flips == 2:
|
202 |
+
y = img_size[0] - y # de-flip ud
|
203 |
+
elif flips == 3:
|
204 |
+
x = img_size[1] - x # de-flip lr
|
205 |
+
p = torch.cat((x, y, wh, p[..., 4:]), -1)
|
206 |
+
return p
|
207 |
+
|
208 |
+
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
209 |
+
# https://arxiv.org/abs/1708.02002 section 3.3
|
210 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
211 |
+
m = self.model[-1] # Detect() module
|
212 |
+
for mi, s in zip(m.m, m.stride): # from
|
213 |
+
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
214 |
+
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
215 |
+
b.data[:, 5:5+m.nc] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
216 |
+
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
217 |
+
|
218 |
+
def _print_biases(self):
|
219 |
+
m = self.model[-1] # Detect() module
|
220 |
+
for mi in m.m: # from
|
221 |
+
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
222 |
+
LOGGER.info(
|
223 |
+
('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
224 |
+
|
225 |
+
# def _print_weights(self):
|
226 |
+
# for m in self.model.modules():
|
227 |
+
# if type(m) is Bottleneck:
|
228 |
+
# LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
|
229 |
+
|
230 |
+
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
231 |
+
LOGGER.info('Fusing layers... ')
|
232 |
+
for m in self.model.modules():
|
233 |
+
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
|
234 |
+
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
235 |
+
delattr(m, 'bn') # remove batchnorm
|
236 |
+
m.forward = m.forward_fuse # update forward
|
237 |
+
self.info()
|
238 |
+
return self
|
239 |
+
|
240 |
+
def autoshape(self): # add AutoShape module
|
241 |
+
LOGGER.info('Adding AutoShape... ')
|
242 |
+
m = AutoShape(self) # wrap model
|
243 |
+
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
|
244 |
+
return m
|
245 |
+
|
246 |
+
def info(self, verbose=False, img_size=640): # print model information
|
247 |
+
model_info(self, verbose, img_size)
|
248 |
+
|
249 |
+
|
250 |
+
def parse_model(d, ch): # model_dict, input_channels(3)
|
251 |
+
LOGGER.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
|
252 |
+
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
253 |
+
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
254 |
+
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
255 |
+
|
256 |
+
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
257 |
+
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
258 |
+
m = eval(m) if isinstance(m, str) else m # eval strings
|
259 |
+
for j, a in enumerate(args):
|
260 |
+
try:
|
261 |
+
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
262 |
+
except:
|
263 |
+
pass
|
264 |
+
|
265 |
+
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
266 |
+
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
|
267 |
+
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
|
268 |
+
c1, c2 = ch[f], args[0]
|
269 |
+
if c2 != no: # if not output
|
270 |
+
c2 = make_divisible(c2 * gw, 8)
|
271 |
+
|
272 |
+
args = [c1, c2, *args[1:]]
|
273 |
+
if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
|
274 |
+
args.insert(2, n) # number of repeats
|
275 |
+
n = 1
|
276 |
+
elif m is nn.BatchNorm2d:
|
277 |
+
args = [ch[f]]
|
278 |
+
elif m is Concat:
|
279 |
+
c2 = sum([ch[x] for x in f])
|
280 |
+
elif m is Detect:
|
281 |
+
args.append([ch[x] for x in f])
|
282 |
+
if isinstance(args[1], int): # number of anchors
|
283 |
+
args[1] = [list(range(args[1] * 2))] * len(f)
|
284 |
+
elif m is Contract:
|
285 |
+
c2 = ch[f] * args[0] ** 2
|
286 |
+
elif m is Expand:
|
287 |
+
c2 = ch[f] // args[0] ** 2
|
288 |
+
else:
|
289 |
+
c2 = ch[f]
|
290 |
+
|
291 |
+
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
|
292 |
+
t = str(m)[8:-2].replace('__main__.', '') # module type
|
293 |
+
np = sum([x.numel() for x in m_.parameters()]) # number params
|
294 |
+
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
295 |
+
LOGGER.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n_, np, t, args)) # print
|
296 |
+
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
297 |
+
layers.append(m_)
|
298 |
+
if i == 0:
|
299 |
+
ch = []
|
300 |
+
ch.append(c2)
|
301 |
+
return nn.Sequential(*layers), sorted(save)
|
302 |
+
|
303 |
+
|
304 |
+
if __name__ == '__main__':
|
305 |
+
parser = argparse.ArgumentParser()
|
306 |
+
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
|
307 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
308 |
+
parser.add_argument('--profile', action='store_true', help='profile model speed')
|
309 |
+
opt = parser.parse_args()
|
310 |
+
opt.cfg = check_file(opt.cfg) # check file
|
311 |
+
set_logging()
|
312 |
+
device = select_device(opt.device)
|
313 |
+
|
314 |
+
# Create model
|
315 |
+
model = Model(opt.cfg).to(device)
|
316 |
+
model.train()
|
317 |
+
|
318 |
+
# Profile
|
319 |
+
if opt.profile:
|
320 |
+
img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
|
321 |
+
y = model(img, profile=True)
|
322 |
+
|
323 |
+
# Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
|
324 |
+
# from torch.utils.tensorboard import SummaryWriter
|
325 |
+
# tb_writer = SummaryWriter('.')
|
326 |
+
# LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
|
327 |
+
# tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph
|
models/yolov5l6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 1.0 # model depth multiple
|
6 |
+
width_multiple: 1.0 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [19,27, 44,40, 38,94] # P3/8
|
9 |
+
- [96,68, 86,152, 180,137] # P4/16
|
10 |
+
- [140,301, 303,264, 238,542] # P5/32
|
11 |
+
- [436,615, 739,380, 925,792] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
17 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
+
[-1, 3, C3, [128]],
|
19 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 9, C3, [256]],
|
21 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
+
[-1, 9, C3, [512]],
|
23 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
+
[-1, 3, C3, [768]],
|
25 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 1, SPP, [1024, [3, 5, 7]]],
|
27 |
+
[-1, 3, C3, [1024, False]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 head
|
31 |
+
head:
|
32 |
+
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
+
[-1, 3, C3, [768, False]], # 15
|
36 |
+
|
37 |
+
[-1, 1, Conv, [512, 1, 1]],
|
38 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
+
[-1, 3, C3, [512, False]], # 19
|
41 |
+
|
42 |
+
[-1, 1, Conv, [256, 1, 1]],
|
43 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
48 |
+
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[-1, 1, Conv, [512, 3, 2]],
|
52 |
+
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[-1, 1, Conv, [768, 3, 2]],
|
56 |
+
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
+
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
models/yolov5m6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.67 # model depth multiple
|
6 |
+
width_multiple: 0.75 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [19,27, 44,40, 38,94] # P3/8
|
9 |
+
- [96,68, 86,152, 180,137] # P4/16
|
10 |
+
- [140,301, 303,264, 238,542] # P5/32
|
11 |
+
- [436,615, 739,380, 925,792] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
17 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
+
[-1, 3, C3, [128]],
|
19 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 9, C3, [256]],
|
21 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
+
[-1, 9, C3, [512]],
|
23 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
+
[-1, 3, C3, [768]],
|
25 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 1, SPP, [1024, [3, 5, 7]]],
|
27 |
+
[-1, 3, C3, [1024, False]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 head
|
31 |
+
head:
|
32 |
+
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
+
[-1, 3, C3, [768, False]], # 15
|
36 |
+
|
37 |
+
[-1, 1, Conv, [512, 1, 1]],
|
38 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
+
[-1, 3, C3, [512, False]], # 19
|
41 |
+
|
42 |
+
[-1, 1, Conv, [256, 1, 1]],
|
43 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
48 |
+
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[-1, 1, Conv, [512, 3, 2]],
|
52 |
+
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[-1, 1, Conv, [768, 3, 2]],
|
56 |
+
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
+
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
models/yolov5s6.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
|
3 |
+
# Parameters
|
4 |
+
nc: 80 # number of classes
|
5 |
+
depth_multiple: 0.33 # model depth multiple
|
6 |
+
width_multiple: 0.50 # layer channel multiple
|
7 |
+
anchors:
|
8 |
+
- [19,27, 44,40, 38,94] # P3/8
|
9 |
+
- [96,68, 86,152, 180,137] # P4/16
|
10 |
+
- [140,301, 303,264, 238,542] # P5/32
|
11 |
+
- [436,615, 739,380, 925,792] # P6/64
|
12 |
+
|
13 |
+
# YOLOv5 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
17 |
+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
+
[-1, 3, C3, [128]],
|
19 |
+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
+
[-1, 9, C3, [256]],
|
21 |
+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
+
[-1, 9, C3, [512]],
|
23 |
+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
+
[-1, 3, C3, [768]],
|
25 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
+
[-1, 1, SPP, [1024, [3, 5, 7]]],
|
27 |
+
[-1, 3, C3, [1024, False]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# YOLOv5 head
|
31 |
+
head:
|
32 |
+
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
+
[-1, 3, C3, [768, False]], # 15
|
36 |
+
|
37 |
+
[-1, 1, Conv, [512, 1, 1]],
|
38 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
+
[-1, 3, C3, [512, False]], # 19
|
41 |
+
|
42 |
+
[-1, 1, Conv, [256, 1, 1]],
|
43 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
+
|
47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
48 |
+
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
+
|
51 |
+
[-1, 1, Conv, [512, 3, 2]],
|
52 |
+
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
+
|
55 |
+
[-1, 1, Conv, [768, 3, 2]],
|
56 |
+
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
+
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
+
|
59 |
+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
+
]
|
train.py
ADDED
@@ -0,0 +1,601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
import random
|
6 |
+
import sys
|
7 |
+
import time
|
8 |
+
from copy import deepcopy
|
9 |
+
from pathlib import Path
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import torch.distributed as dist
|
14 |
+
import torch.nn as nn
|
15 |
+
import yaml
|
16 |
+
from torch.cuda import amp
|
17 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
18 |
+
from torch.optim import Adam, SGD, lr_scheduler
|
19 |
+
from tqdm import tqdm
|
20 |
+
|
21 |
+
FILE = Path(__file__).absolute()
|
22 |
+
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
|
23 |
+
|
24 |
+
import val
|
25 |
+
from models.yolo import Model
|
26 |
+
from utils.autoanchor import check_anchors
|
27 |
+
from utils.datasets import create_dataloader
|
28 |
+
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
|
29 |
+
strip_optimizer, get_latest_run, check_dataset, check_file, check_img_size, \
|
30 |
+
print_mutation, set_logging, one_cycle, colorstr, methods
|
31 |
+
from utils.downloads import attempt_download
|
32 |
+
from utils.loss import ComputeLoss
|
33 |
+
from utils.plots import plot_labels, plot_evolve
|
34 |
+
from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, intersect_dicts, select_device, \
|
35 |
+
torch_distributed_zero_first
|
36 |
+
from utils.metrics import fitness
|
37 |
+
from utils.loggers import Loggers
|
38 |
+
from utils.callbacks import Callbacks
|
39 |
+
|
40 |
+
LOGGER = logging.getLogger(__name__)
|
41 |
+
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
42 |
+
RANK = int(os.getenv('RANK', -1))
|
43 |
+
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
|
44 |
+
|
45 |
+
|
46 |
+
def train(hyp, # path/to/hyp.yaml or hyp dictionary
|
47 |
+
opt,
|
48 |
+
device,
|
49 |
+
callbacks=Callbacks()
|
50 |
+
):
|
51 |
+
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, \
|
52 |
+
val_scales, val_flips = \
|
53 |
+
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
|
54 |
+
opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze, opt.val_scales, opt.val_flips
|
55 |
+
|
56 |
+
val_flips = [None if f == -1 else f for f in val_flips]
|
57 |
+
|
58 |
+
# Directories
|
59 |
+
w = save_dir / 'weights' # weights dir
|
60 |
+
w.mkdir(parents=True, exist_ok=True) # make dir
|
61 |
+
last, best = w / 'last.pt', w / 'best.pt'
|
62 |
+
|
63 |
+
# Hyperparameters
|
64 |
+
if isinstance(hyp, str):
|
65 |
+
with open(hyp) as f:
|
66 |
+
hyp = yaml.safe_load(f) # load hyps dict
|
67 |
+
LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
|
68 |
+
|
69 |
+
# Save run settings
|
70 |
+
with open(save_dir / 'hyp.yaml', 'w') as f:
|
71 |
+
yaml.safe_dump(hyp, f, sort_keys=False)
|
72 |
+
with open(save_dir / 'opt.yaml', 'w') as f:
|
73 |
+
yaml.safe_dump(vars(opt), f, sort_keys=False)
|
74 |
+
data_dict = None
|
75 |
+
|
76 |
+
# Loggers
|
77 |
+
if RANK in [-1, 0]:
|
78 |
+
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
|
79 |
+
if loggers.wandb:
|
80 |
+
data_dict = loggers.wandb.data_dict
|
81 |
+
if resume:
|
82 |
+
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp
|
83 |
+
|
84 |
+
# Register actions
|
85 |
+
for k in methods(loggers):
|
86 |
+
callbacks.register_action(k, callback=getattr(loggers, k))
|
87 |
+
|
88 |
+
# Config
|
89 |
+
plots = not evolve # create plots
|
90 |
+
cuda = device.type != 'cpu'
|
91 |
+
init_seeds(1 + RANK)
|
92 |
+
with torch_distributed_zero_first(RANK):
|
93 |
+
data_dict = data_dict or check_dataset(data) # check if None
|
94 |
+
train_path, val_path = data_dict['train'], data_dict['val']
|
95 |
+
nc = 1 if single_cls else int(data_dict['nc']) # number of classes
|
96 |
+
names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
|
97 |
+
assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
|
98 |
+
is_coco = data.endswith('coco.yaml') and nc == 80 # COCO dataset
|
99 |
+
|
100 |
+
labels_dir = data_dict.get('labels', 'labels')
|
101 |
+
kp_flip = data_dict.get('kp_flip')
|
102 |
+
kp_bbox = data_dict.get('kp_bbox')
|
103 |
+
num_coords = data_dict.get('num_coords', 0)
|
104 |
+
|
105 |
+
# Model
|
106 |
+
pretrained = weights.endswith('.pt')
|
107 |
+
if pretrained:
|
108 |
+
with torch_distributed_zero_first(RANK):
|
109 |
+
weights = attempt_download(weights) # download if not found locally
|
110 |
+
ckpt = torch.load(weights, map_location=device) # load checkpoint
|
111 |
+
model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors'), num_coords=num_coords).to(device) # create
|
112 |
+
exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
|
113 |
+
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
114 |
+
csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
|
115 |
+
model.load_state_dict(csd, strict=False) # load
|
116 |
+
LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
|
117 |
+
else:
|
118 |
+
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors'), num_coords=num_coords).to(device) # create
|
119 |
+
|
120 |
+
# Freeze
|
121 |
+
freeze = [f'model.{x}.' for x in range(freeze)] # layers to freeze
|
122 |
+
for k, v in model.named_parameters():
|
123 |
+
v.requires_grad = True # train all layers
|
124 |
+
if any(x in k for x in freeze):
|
125 |
+
print(f'freezing {k}')
|
126 |
+
v.requires_grad = False
|
127 |
+
|
128 |
+
# Optimizer
|
129 |
+
nbs = 64 # nominal batch size
|
130 |
+
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
|
131 |
+
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
|
132 |
+
LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
|
133 |
+
|
134 |
+
g0, g1, g2 = [], [], [] # optimizer parameter groups
|
135 |
+
for v in model.modules():
|
136 |
+
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias
|
137 |
+
g2.append(v.bias)
|
138 |
+
if isinstance(v, nn.BatchNorm2d): # weight (no decay)
|
139 |
+
g0.append(v.weight)
|
140 |
+
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay)
|
141 |
+
g1.append(v.weight)
|
142 |
+
|
143 |
+
if opt.adam:
|
144 |
+
optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
|
145 |
+
else:
|
146 |
+
optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
|
147 |
+
|
148 |
+
optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay
|
149 |
+
optimizer.add_param_group({'params': g2}) # add g2 (biases)
|
150 |
+
# if opt.autobalance:
|
151 |
+
# optimizer.add_param_group({'params': model.loss_coeffs}) # for autobalancing if used
|
152 |
+
|
153 |
+
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
|
154 |
+
f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias")
|
155 |
+
del g0, g1, g2
|
156 |
+
|
157 |
+
# Scheduler
|
158 |
+
if opt.linear_lr:
|
159 |
+
lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
|
160 |
+
else:
|
161 |
+
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
|
162 |
+
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
|
163 |
+
|
164 |
+
# EMA
|
165 |
+
ema = ModelEMA(model) if RANK in [-1, 0] else None
|
166 |
+
|
167 |
+
# Resume
|
168 |
+
start_epoch, best_fitness = 0, 0.0
|
169 |
+
if pretrained:
|
170 |
+
# Optimizer
|
171 |
+
if ckpt['optimizer'] is not None:
|
172 |
+
optimizer.load_state_dict(ckpt['optimizer'])
|
173 |
+
best_fitness = ckpt['best_fitness']
|
174 |
+
|
175 |
+
# EMA
|
176 |
+
if ema and ckpt.get('ema'):
|
177 |
+
ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
|
178 |
+
ema.updates = ckpt['updates']
|
179 |
+
|
180 |
+
# Epochs
|
181 |
+
start_epoch = ckpt['epoch'] + 1
|
182 |
+
if resume:
|
183 |
+
assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
|
184 |
+
if epochs < start_epoch:
|
185 |
+
LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
|
186 |
+
epochs += ckpt['epoch'] # finetune additional epochs
|
187 |
+
|
188 |
+
del ckpt, csd
|
189 |
+
|
190 |
+
# Image sizes
|
191 |
+
gs = max(int(model.stride.max()), 32) # grid size (max stride)
|
192 |
+
nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
|
193 |
+
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
|
194 |
+
|
195 |
+
# DP mode
|
196 |
+
if cuda and RANK == -1 and torch.cuda.device_count() > 1:
|
197 |
+
logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
|
198 |
+
'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
|
199 |
+
model = torch.nn.DataParallel(model)
|
200 |
+
|
201 |
+
# SyncBatchNorm
|
202 |
+
if opt.sync_bn and cuda and RANK != -1:
|
203 |
+
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
204 |
+
LOGGER.info('Using SyncBatchNorm()')
|
205 |
+
|
206 |
+
# Trainloader
|
207 |
+
train_loader, dataset = create_dataloader(train_path, labels_dir, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
|
208 |
+
hyp=hyp, augment=True, cache=opt.cache, rect=opt.rect, rank=RANK,
|
209 |
+
workers=workers, image_weights=opt.image_weights, quad=opt.quad,
|
210 |
+
prefix=colorstr('train: '), kp_flip=kp_flip, kp_bbox=kp_bbox)
|
211 |
+
mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class
|
212 |
+
nb = len(train_loader) # number of batches
|
213 |
+
assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
|
214 |
+
|
215 |
+
# Process 0
|
216 |
+
if RANK in [-1, 0]:
|
217 |
+
val_loader = create_dataloader(val_path, labels_dir, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
|
218 |
+
hyp=hyp, cache=None if noval else opt.cache, rect=False, rank=-1,
|
219 |
+
workers=workers, pad=0.5,
|
220 |
+
prefix=colorstr('val: '), kp_flip=kp_flip, kp_bbox=kp_bbox)[0]
|
221 |
+
|
222 |
+
if not resume:
|
223 |
+
# labels = np.concatenate(dataset.labels, 0)
|
224 |
+
# c = torch.tensor(labels[:, 0]) # classes
|
225 |
+
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
|
226 |
+
# model._initialize_biases(cf.to(device))
|
227 |
+
# if plots:
|
228 |
+
# plot_labels(labels, names, save_dir)
|
229 |
+
|
230 |
+
# Anchors
|
231 |
+
if not opt.noautoanchor:
|
232 |
+
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
|
233 |
+
model.half().float() # pre-reduce anchor precision
|
234 |
+
|
235 |
+
callbacks.on_pretrain_routine_end()
|
236 |
+
|
237 |
+
# DDP mode
|
238 |
+
if cuda and RANK != -1:
|
239 |
+
model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
|
240 |
+
|
241 |
+
# Model parameters
|
242 |
+
hyp['box'] *= 3. / nl # scale to layers
|
243 |
+
hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
|
244 |
+
hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
|
245 |
+
hyp['kp'] *= 3. / nl
|
246 |
+
hyp['label_smoothing'] = opt.label_smoothing
|
247 |
+
model.nc = nc # attach number of classes to model
|
248 |
+
model.hyp = hyp # attach hyperparameters to model
|
249 |
+
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
|
250 |
+
model.names = names
|
251 |
+
|
252 |
+
# Start training
|
253 |
+
t0 = time.time()
|
254 |
+
nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
|
255 |
+
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
256 |
+
last_opt_step = -1
|
257 |
+
maps = np.zeros(nc) # mAP per class
|
258 |
+
results = (0, 0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls, kp)
|
259 |
+
scheduler.last_epoch = start_epoch - 1 # do not move
|
260 |
+
scaler = amp.GradScaler(enabled=cuda)
|
261 |
+
stopper = EarlyStopping(patience=opt.patience)
|
262 |
+
compute_loss = ComputeLoss(model, autobalance=False, num_coords=num_coords) # init loss class
|
263 |
+
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
|
264 |
+
f'Using {train_loader.num_workers} dataloader workers\n'
|
265 |
+
f"Logging results to {colorstr('bold', save_dir)}\n"
|
266 |
+
f'Starting training for {epochs} epochs...')
|
267 |
+
|
268 |
+
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
269 |
+
model.train()
|
270 |
+
|
271 |
+
# Update image weights (optional, single-GPU only)
|
272 |
+
if opt.image_weights:
|
273 |
+
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
|
274 |
+
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
|
275 |
+
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
|
276 |
+
|
277 |
+
# Update mosaic border (optional)
|
278 |
+
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
|
279 |
+
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
|
280 |
+
|
281 |
+
mloss = torch.zeros(4, device=device) # mean losses
|
282 |
+
if RANK != -1:
|
283 |
+
train_loader.sampler.set_epoch(epoch)
|
284 |
+
pbar = enumerate(train_loader)
|
285 |
+
LOGGER.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'kps', 'labels', 'img_size'))
|
286 |
+
if RANK in [-1, 0]:
|
287 |
+
pbar = tqdm(pbar, total=nb) # progress bar
|
288 |
+
optimizer.zero_grad()
|
289 |
+
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
290 |
+
ni = i + nb * epoch # number integrated batches (since train start)
|
291 |
+
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
|
292 |
+
|
293 |
+
# Warmup
|
294 |
+
if ni <= nw:
|
295 |
+
xi = [0, nw] # x interp
|
296 |
+
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
|
297 |
+
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
|
298 |
+
for j, x in enumerate(optimizer.param_groups):
|
299 |
+
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
300 |
+
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
|
301 |
+
if 'momentum' in x:
|
302 |
+
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
|
303 |
+
|
304 |
+
# Multi-scale
|
305 |
+
if opt.multi_scale:
|
306 |
+
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
|
307 |
+
sf = sz / max(imgs.shape[2:]) # scale factor
|
308 |
+
if sf != 1:
|
309 |
+
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
|
310 |
+
imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
|
311 |
+
|
312 |
+
# Forward
|
313 |
+
with amp.autocast(enabled=cuda):
|
314 |
+
pred = model(imgs) # forward
|
315 |
+
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
|
316 |
+
if RANK != -1:
|
317 |
+
loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
|
318 |
+
if opt.quad:
|
319 |
+
loss *= 4.
|
320 |
+
|
321 |
+
# Backward
|
322 |
+
scaler.scale(loss).backward()
|
323 |
+
|
324 |
+
# Optimize
|
325 |
+
if ni - last_opt_step >= accumulate:
|
326 |
+
scaler.step(optimizer) # optimizer.step
|
327 |
+
scaler.update()
|
328 |
+
optimizer.zero_grad()
|
329 |
+
if ema:
|
330 |
+
ema.update(model)
|
331 |
+
last_opt_step = ni
|
332 |
+
|
333 |
+
# Log
|
334 |
+
if RANK in [-1, 0]:
|
335 |
+
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
336 |
+
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
|
337 |
+
pbar.set_description(('%10s' * 2 + '%10.4g' * 6) % (
|
338 |
+
f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
|
339 |
+
callbacks.on_train_batch_end(ni, model, imgs, targets, paths, plots, opt.sync_bn)
|
340 |
+
# end batch ------------------------------------------------------------------------------------------------
|
341 |
+
|
342 |
+
# Scheduler
|
343 |
+
lr = [x['lr'] for x in optimizer.param_groups[:3]] # for loggers
|
344 |
+
scheduler.step()
|
345 |
+
|
346 |
+
if RANK in [-1, 0]:
|
347 |
+
# mAP
|
348 |
+
callbacks.on_train_epoch_end(epoch=epoch)
|
349 |
+
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
|
350 |
+
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
|
351 |
+
if not noval or final_epoch: # Calculate mAP
|
352 |
+
results, maps, _ = val.run(data_dict,
|
353 |
+
batch_size=batch_size // WORLD_SIZE,
|
354 |
+
imgsz=imgsz,
|
355 |
+
conf_thres=0.01,
|
356 |
+
model=ema.ema,
|
357 |
+
dataloader=val_loader,
|
358 |
+
compute_loss=compute_loss,
|
359 |
+
scales=val_scales,
|
360 |
+
flips=val_flips)
|
361 |
+
|
362 |
+
# Update best mAP
|
363 |
+
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
|
364 |
+
if fi > best_fitness:
|
365 |
+
best_fitness = fi
|
366 |
+
log_vals = list(mloss) + list(results) + lr
|
367 |
+
callbacks.on_fit_epoch_end(log_vals, epoch, best_fitness, fi)
|
368 |
+
|
369 |
+
# Save model
|
370 |
+
if (not nosave) or (final_epoch and not evolve): # if save
|
371 |
+
ckpt = {'epoch': epoch,
|
372 |
+
'best_fitness': best_fitness,
|
373 |
+
'model': deepcopy(de_parallel(model)).half(),
|
374 |
+
'ema': deepcopy(ema.ema).half(),
|
375 |
+
'updates': ema.updates,
|
376 |
+
'optimizer': optimizer.state_dict(),
|
377 |
+
'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None}
|
378 |
+
|
379 |
+
# Save last, best and delete
|
380 |
+
torch.save(ckpt, last)
|
381 |
+
if best_fitness == fi:
|
382 |
+
torch.save(ckpt, best)
|
383 |
+
del ckpt
|
384 |
+
callbacks.on_model_save(last, epoch, final_epoch, best_fitness, fi)
|
385 |
+
|
386 |
+
# Stop Single-GPU
|
387 |
+
if RANK == -1 and stopper(epoch=epoch, fitness=fi):
|
388 |
+
break
|
389 |
+
|
390 |
+
# Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
|
391 |
+
# stop = stopper(epoch=epoch, fitness=fi)
|
392 |
+
# if RANK == 0:
|
393 |
+
# dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks
|
394 |
+
|
395 |
+
# Stop DPP
|
396 |
+
# with torch_distributed_zero_first(RANK):
|
397 |
+
# if stop:
|
398 |
+
# break # must break all DDP ranks
|
399 |
+
|
400 |
+
# end epoch ----------------------------------------------------------------------------------------------------
|
401 |
+
# end training -----------------------------------------------------------------------------------------------------
|
402 |
+
if RANK in [-1, 0]:
|
403 |
+
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
|
404 |
+
if not evolve:
|
405 |
+
# Strip optimizers
|
406 |
+
for f in last, best:
|
407 |
+
if f.exists():
|
408 |
+
strip_optimizer(f) # strip optimizers
|
409 |
+
callbacks.on_train_end(last, best, plots, epoch)
|
410 |
+
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
|
411 |
+
|
412 |
+
torch.cuda.empty_cache()
|
413 |
+
return results
|
414 |
+
|
415 |
+
|
416 |
+
def parse_opt(known=False):
|
417 |
+
parser = argparse.ArgumentParser()
|
418 |
+
parser.add_argument('--weights', type=str, default='yolov5s6.pt', help='initial weights path')
|
419 |
+
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
|
420 |
+
parser.add_argument('--data', type=str, default='data/coco-kp.yaml', help='dataset.yaml path')
|
421 |
+
parser.add_argument('--hyp', type=str, default='data/hyps/hyp.kp-p6.yaml', help='hyperparameters path')
|
422 |
+
parser.add_argument('--epochs', type=int, default=300)
|
423 |
+
parser.add_argument('--batch-size', type=int, default=8, help='total batch size for all GPUs')
|
424 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=1280, help='train, val image size (pixels)')
|
425 |
+
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
426 |
+
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
|
427 |
+
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
428 |
+
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
|
429 |
+
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
|
430 |
+
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
|
431 |
+
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
432 |
+
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
|
433 |
+
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
|
434 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
435 |
+
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
436 |
+
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
|
437 |
+
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
|
438 |
+
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
439 |
+
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
|
440 |
+
parser.add_argument('--project', default='runs/train', help='save to project/name')
|
441 |
+
parser.add_argument('--entity', default=None, help='W&B entity')
|
442 |
+
parser.add_argument('--name', default='exp', help='save to project/name')
|
443 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
444 |
+
parser.add_argument('--quad', action='store_true', help='quad dataloader')
|
445 |
+
parser.add_argument('--linear-lr', action='store_true', help='linear LR')
|
446 |
+
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
|
447 |
+
parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
|
448 |
+
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
|
449 |
+
parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
|
450 |
+
parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
|
451 |
+
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
|
452 |
+
parser.add_argument('--freeze', type=int, default=0, help='Number of layers to freeze. backbone=10, all=24')
|
453 |
+
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
|
454 |
+
parser.add_argument('--val-scales', type=float, nargs='+', default=[1])
|
455 |
+
parser.add_argument('--val-flips', type=int, nargs='+', default=[-1])
|
456 |
+
parser.add_argument('--autobalance', action='store_true', help='Learn keypoint and object loss scaling')
|
457 |
+
opt = parser.parse_known_args()[0] if known else parser.parse_args()
|
458 |
+
return opt
|
459 |
+
|
460 |
+
|
461 |
+
def main(opt):
|
462 |
+
# Checks
|
463 |
+
set_logging(RANK)
|
464 |
+
if RANK in [-1, 0]:
|
465 |
+
print(colorstr('train: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
|
466 |
+
# check_git_status()
|
467 |
+
# check_requirements(requirements=FILE.parent / 'requirements.txt', exclude=['thop'])
|
468 |
+
|
469 |
+
# Resume
|
470 |
+
if opt.resume and not opt.evolve: # resume an interrupted run
|
471 |
+
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
|
472 |
+
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
|
473 |
+
with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
|
474 |
+
opt = argparse.Namespace(**yaml.safe_load(f)) # replace
|
475 |
+
opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate
|
476 |
+
LOGGER.info(f'Resuming training from {ckpt}')
|
477 |
+
else:
|
478 |
+
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
|
479 |
+
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
480 |
+
if opt.evolve:
|
481 |
+
opt.project = 'runs/evolve'
|
482 |
+
opt.exist_ok = opt.resume
|
483 |
+
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
|
484 |
+
|
485 |
+
# DDP mode
|
486 |
+
device = select_device(opt.device, batch_size=opt.batch_size)
|
487 |
+
if LOCAL_RANK != -1:
|
488 |
+
from datetime import timedelta
|
489 |
+
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
|
490 |
+
assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
|
491 |
+
assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'
|
492 |
+
assert not opt.evolve, '--evolve argument is not compatible with DDP training'
|
493 |
+
torch.cuda.set_device(LOCAL_RANK)
|
494 |
+
device = torch.device('cuda', LOCAL_RANK)
|
495 |
+
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
|
496 |
+
|
497 |
+
# Train
|
498 |
+
if not opt.evolve:
|
499 |
+
train(opt.hyp, opt, device)
|
500 |
+
if WORLD_SIZE > 1 and RANK == 0:
|
501 |
+
_ = [print('Destroying process group... ', end=''), dist.destroy_process_group(), print('Done.')]
|
502 |
+
|
503 |
+
# Evolve hyperparameters (optional)
|
504 |
+
else:
|
505 |
+
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
|
506 |
+
meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
|
507 |
+
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
508 |
+
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
|
509 |
+
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
|
510 |
+
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
|
511 |
+
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
|
512 |
+
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
|
513 |
+
'box': (1, 0.02, 0.2), # box loss gain
|
514 |
+
'cls': (1, 0.2, 4.0), # cls loss gain
|
515 |
+
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
|
516 |
+
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
|
517 |
+
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
|
518 |
+
'iou_t': (0, 0.1, 0.7), # IoU training threshold
|
519 |
+
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
|
520 |
+
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
|
521 |
+
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
|
522 |
+
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
523 |
+
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
524 |
+
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
|
525 |
+
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
|
526 |
+
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
|
527 |
+
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
|
528 |
+
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
|
529 |
+
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
530 |
+
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
|
531 |
+
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
|
532 |
+
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
|
533 |
+
'mixup': (1, 0.0, 1.0), # image mixup (probability)
|
534 |
+
'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
|
535 |
+
|
536 |
+
with open(opt.hyp) as f:
|
537 |
+
hyp = yaml.safe_load(f) # load hyps dict
|
538 |
+
if 'anchors' not in hyp: # anchors commented in hyp.yaml
|
539 |
+
hyp['anchors'] = 3
|
540 |
+
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
|
541 |
+
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
|
542 |
+
evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
|
543 |
+
if opt.bucket:
|
544 |
+
os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {save_dir}') # download evolve.csv if exists
|
545 |
+
|
546 |
+
for _ in range(opt.evolve): # generations to evolve
|
547 |
+
if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
|
548 |
+
# Select parent(s)
|
549 |
+
parent = 'single' # parent selection method: 'single' or 'weighted'
|
550 |
+
x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
|
551 |
+
n = min(5, len(x)) # number of previous results to consider
|
552 |
+
x = x[np.argsort(-fitness(x))][:n] # top n mutations
|
553 |
+
w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
|
554 |
+
if parent == 'single' or len(x) == 1:
|
555 |
+
# x = x[random.randint(0, n - 1)] # random selection
|
556 |
+
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
|
557 |
+
elif parent == 'weighted':
|
558 |
+
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
|
559 |
+
|
560 |
+
# Mutate
|
561 |
+
mp, s = 0.8, 0.2 # mutation probability, sigma
|
562 |
+
npr = np.random
|
563 |
+
npr.seed(int(time.time()))
|
564 |
+
g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
|
565 |
+
ng = len(meta)
|
566 |
+
v = np.ones(ng)
|
567 |
+
while all(v == 1): # mutate until a change occurs (prevent duplicates)
|
568 |
+
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
|
569 |
+
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
|
570 |
+
hyp[k] = float(x[i + 7] * v[i]) # mutate
|
571 |
+
|
572 |
+
# Constrain to limits
|
573 |
+
for k, v in meta.items():
|
574 |
+
hyp[k] = max(hyp[k], v[1]) # lower limit
|
575 |
+
hyp[k] = min(hyp[k], v[2]) # upper limit
|
576 |
+
hyp[k] = round(hyp[k], 5) # significant digits
|
577 |
+
|
578 |
+
# Train mutation
|
579 |
+
results = train(hyp.copy(), opt, device)
|
580 |
+
|
581 |
+
# Write mutation results
|
582 |
+
print_mutation(results, hyp.copy(), save_dir, opt.bucket)
|
583 |
+
|
584 |
+
# Plot results
|
585 |
+
plot_evolve(evolve_csv)
|
586 |
+
print(f'Hyperparameter evolution finished\n'
|
587 |
+
f"Results saved to {colorstr('bold', save_dir)}\n"
|
588 |
+
f'Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}')
|
589 |
+
|
590 |
+
|
591 |
+
def run(**kwargs):
|
592 |
+
# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
|
593 |
+
opt = parse_opt(True)
|
594 |
+
for k, v in kwargs.items():
|
595 |
+
setattr(opt, k, v)
|
596 |
+
main(opt)
|
597 |
+
|
598 |
+
|
599 |
+
if __name__ == "__main__":
|
600 |
+
opt = parse_opt()
|
601 |
+
main(opt)
|
utils/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
utils/activations.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Activation functions
|
4 |
+
"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
|
11 |
+
# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
|
12 |
+
class SiLU(nn.Module): # export-friendly version of nn.SiLU()
|
13 |
+
@staticmethod
|
14 |
+
def forward(x):
|
15 |
+
return x * torch.sigmoid(x)
|
16 |
+
|
17 |
+
|
18 |
+
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
|
19 |
+
@staticmethod
|
20 |
+
def forward(x):
|
21 |
+
# return x * F.hardsigmoid(x) # for torchscript and CoreML
|
22 |
+
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
|
23 |
+
|
24 |
+
|
25 |
+
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
|
26 |
+
class Mish(nn.Module):
|
27 |
+
@staticmethod
|
28 |
+
def forward(x):
|
29 |
+
return x * F.softplus(x).tanh()
|
30 |
+
|
31 |
+
|
32 |
+
class MemoryEfficientMish(nn.Module):
|
33 |
+
class F(torch.autograd.Function):
|
34 |
+
@staticmethod
|
35 |
+
def forward(ctx, x):
|
36 |
+
ctx.save_for_backward(x)
|
37 |
+
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
|
38 |
+
|
39 |
+
@staticmethod
|
40 |
+
def backward(ctx, grad_output):
|
41 |
+
x = ctx.saved_tensors[0]
|
42 |
+
sx = torch.sigmoid(x)
|
43 |
+
fx = F.softplus(x).tanh()
|
44 |
+
return grad_output * (fx + x * sx * (1 - fx * fx))
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
return self.F.apply(x)
|
48 |
+
|
49 |
+
|
50 |
+
# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
|
51 |
+
class FReLU(nn.Module):
|
52 |
+
def __init__(self, c1, k=3): # ch_in, kernel
|
53 |
+
super().__init__()
|
54 |
+
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
|
55 |
+
self.bn = nn.BatchNorm2d(c1)
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
return torch.max(x, self.bn(self.conv(x)))
|
59 |
+
|
60 |
+
|
61 |
+
# ACON https://arxiv.org/pdf/2009.04759.pdf ----------------------------------------------------------------------------
|
62 |
+
class AconC(nn.Module):
|
63 |
+
r""" ACON activation (activate or not).
|
64 |
+
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
|
65 |
+
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
66 |
+
"""
|
67 |
+
|
68 |
+
def __init__(self, c1):
|
69 |
+
super().__init__()
|
70 |
+
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
71 |
+
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
72 |
+
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
|
73 |
+
|
74 |
+
def forward(self, x):
|
75 |
+
dpx = (self.p1 - self.p2) * x
|
76 |
+
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
|
77 |
+
|
78 |
+
|
79 |
+
class MetaAconC(nn.Module):
|
80 |
+
r""" ACON activation (activate or not).
|
81 |
+
MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
|
82 |
+
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
83 |
+
"""
|
84 |
+
|
85 |
+
def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
|
86 |
+
super().__init__()
|
87 |
+
c2 = max(r, c1 // r)
|
88 |
+
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
89 |
+
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
90 |
+
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
|
91 |
+
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
|
92 |
+
# self.bn1 = nn.BatchNorm2d(c2)
|
93 |
+
# self.bn2 = nn.BatchNorm2d(c1)
|
94 |
+
|
95 |
+
def forward(self, x):
|
96 |
+
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
|
97 |
+
# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
|
98 |
+
# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
|
99 |
+
beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
|
100 |
+
dpx = (self.p1 - self.p2) * x
|
101 |
+
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
|
utils/augmentations.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Image augmentation functions
|
4 |
+
"""
|
5 |
+
|
6 |
+
import logging
|
7 |
+
import math
|
8 |
+
import random
|
9 |
+
|
10 |
+
import cv2
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from utils.general import colorstr, segment2box, resample_segments, check_version
|
14 |
+
from utils.metrics import bbox_ioa
|
15 |
+
|
16 |
+
|
17 |
+
class Albumentations:
|
18 |
+
# YOLOv5 Albumentations class (optional, only used if package is installed)
|
19 |
+
def __init__(self):
|
20 |
+
self.transform = None
|
21 |
+
try:
|
22 |
+
import albumentations as A
|
23 |
+
check_version(A.__version__, '1.0.3') # version requirement
|
24 |
+
|
25 |
+
self.transform = A.Compose([
|
26 |
+
A.Blur(p=0.1),
|
27 |
+
A.MedianBlur(p=0.1),
|
28 |
+
A.ToGray(p=0.01)],
|
29 |
+
bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
|
30 |
+
|
31 |
+
logging.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
|
32 |
+
except ImportError: # package not installed, skip
|
33 |
+
pass
|
34 |
+
except Exception as e:
|
35 |
+
logging.info(colorstr('albumentations: ') + f'{e}')
|
36 |
+
|
37 |
+
def __call__(self, im, labels, p=1.0):
|
38 |
+
if self.transform and random.random() < p:
|
39 |
+
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
|
40 |
+
im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
|
41 |
+
return im, labels
|
42 |
+
|
43 |
+
|
44 |
+
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
|
45 |
+
# HSV color-space augmentation
|
46 |
+
if hgain or sgain or vgain:
|
47 |
+
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
48 |
+
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
|
49 |
+
dtype = im.dtype # uint8
|
50 |
+
|
51 |
+
x = np.arange(0, 256, dtype=r.dtype)
|
52 |
+
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
53 |
+
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
54 |
+
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
55 |
+
|
56 |
+
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
|
57 |
+
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
|
58 |
+
|
59 |
+
|
60 |
+
def hist_equalize(im, clahe=True, bgr=False):
|
61 |
+
# Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
|
62 |
+
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
|
63 |
+
if clahe:
|
64 |
+
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
65 |
+
yuv[:, :, 0] = c.apply(yuv[:, :, 0])
|
66 |
+
else:
|
67 |
+
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
|
68 |
+
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
|
69 |
+
|
70 |
+
|
71 |
+
def replicate(im, labels):
|
72 |
+
# Replicate labels
|
73 |
+
h, w = im.shape[:2]
|
74 |
+
boxes = labels[:, 1:].astype(int)
|
75 |
+
x1, y1, x2, y2 = boxes.T
|
76 |
+
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
77 |
+
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
|
78 |
+
x1b, y1b, x2b, y2b = boxes[i]
|
79 |
+
bh, bw = y2b - y1b, x2b - x1b
|
80 |
+
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
81 |
+
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
82 |
+
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
|
83 |
+
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
84 |
+
|
85 |
+
return im, labels
|
86 |
+
|
87 |
+
|
88 |
+
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
89 |
+
# Resize and pad image while meeting stride-multiple constraints
|
90 |
+
shape = im.shape[:2] # current shape [height, width]
|
91 |
+
if isinstance(new_shape, int):
|
92 |
+
new_shape = (new_shape, new_shape)
|
93 |
+
|
94 |
+
# Scale ratio (new / old)
|
95 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
96 |
+
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
97 |
+
r = min(r, 1.0)
|
98 |
+
|
99 |
+
# Compute padding
|
100 |
+
ratio = r, r # width, height ratios
|
101 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
102 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
103 |
+
if auto: # minimum rectangle
|
104 |
+
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
105 |
+
elif scaleFill: # stretch
|
106 |
+
dw, dh = 0.0, 0.0
|
107 |
+
new_unpad = (new_shape[1], new_shape[0])
|
108 |
+
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
109 |
+
|
110 |
+
dw /= 2 # divide padding into 2 sides
|
111 |
+
dh /= 2
|
112 |
+
|
113 |
+
if shape[::-1] != new_unpad: # resize
|
114 |
+
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
115 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
116 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
117 |
+
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
118 |
+
return im, ratio, (dw, dh)
|
119 |
+
|
120 |
+
|
121 |
+
def random_perspective(im, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
|
122 |
+
border=(0, 0), kp_bbox=None):
|
123 |
+
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
124 |
+
# targets = [cls, xyxy]
|
125 |
+
|
126 |
+
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
127 |
+
width = im.shape[1] + border[1] * 2
|
128 |
+
|
129 |
+
# Center
|
130 |
+
C = np.eye(3)
|
131 |
+
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
|
132 |
+
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
|
133 |
+
|
134 |
+
# Perspective
|
135 |
+
P = np.eye(3)
|
136 |
+
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
137 |
+
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
138 |
+
|
139 |
+
# Rotation and Scale
|
140 |
+
R = np.eye(3)
|
141 |
+
a = random.uniform(-degrees, degrees)
|
142 |
+
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
143 |
+
s = random.uniform(1 - scale, 1 + scale)
|
144 |
+
# s = 2 ** random.uniform(-scale, scale)
|
145 |
+
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
146 |
+
|
147 |
+
# Shear
|
148 |
+
S = np.eye(3)
|
149 |
+
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
150 |
+
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
151 |
+
|
152 |
+
# Translation
|
153 |
+
T = np.eye(3)
|
154 |
+
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
155 |
+
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
156 |
+
|
157 |
+
# Combined rotation matrix
|
158 |
+
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
159 |
+
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
160 |
+
if perspective:
|
161 |
+
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
|
162 |
+
else: # affine
|
163 |
+
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
164 |
+
|
165 |
+
# Visualize
|
166 |
+
# import matplotlib.pyplot as plt
|
167 |
+
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
168 |
+
# ax[0].imshow(im[:, :, ::-1]) # base
|
169 |
+
# ax[1].imshow(im2[:, :, ::-1]) # warped
|
170 |
+
|
171 |
+
# Transform label coordinates
|
172 |
+
n = len(targets)
|
173 |
+
if n:
|
174 |
+
use_segments = any(x.any() for x in segments)
|
175 |
+
new = np.zeros((n, 4))
|
176 |
+
if use_segments: # warp segments
|
177 |
+
segments = resample_segments(segments) # upsample
|
178 |
+
for i, segment in enumerate(segments):
|
179 |
+
xy = np.ones((len(segment), 3))
|
180 |
+
xy[:, :2] = segment
|
181 |
+
xy = xy @ M.T # transform
|
182 |
+
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
|
183 |
+
|
184 |
+
# clip
|
185 |
+
new[i] = segment2box(xy, width, height)
|
186 |
+
|
187 |
+
else: # warp boxes
|
188 |
+
xy = np.ones((n * 4, 3))
|
189 |
+
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
190 |
+
xy = xy @ M.T # transform
|
191 |
+
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
|
192 |
+
|
193 |
+
# create new boxes
|
194 |
+
x = xy[:, [0, 2, 4, 6]]
|
195 |
+
y = xy[:, [1, 3, 5, 7]]
|
196 |
+
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
197 |
+
|
198 |
+
# clip
|
199 |
+
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
|
200 |
+
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
|
201 |
+
|
202 |
+
# filter candidates
|
203 |
+
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
|
204 |
+
targets = targets[i]
|
205 |
+
targets[:, 1:5] = new[i]
|
206 |
+
|
207 |
+
n = len(targets)
|
208 |
+
if n and targets.shape[1] > 5:
|
209 |
+
# warp keypoints in person object
|
210 |
+
person_mask = targets[:, 0] == 0
|
211 |
+
person_targets = targets[person_mask]
|
212 |
+
if len(person_targets) > 0:
|
213 |
+
xy = person_targets[:, 5:].reshape(-1, 3)
|
214 |
+
vis = xy[:, 2:].copy()
|
215 |
+
xy[:, 2:] = 1
|
216 |
+
xy = xy @ M.T # transform
|
217 |
+
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]) # perspective rescale or affine
|
218 |
+
out_mask = (
|
219 |
+
(xy[:, 0] < 0) |
|
220 |
+
(xy[:, 1] < 0) |
|
221 |
+
(xy[:, 0] > width) |
|
222 |
+
(xy[:, 1] > height)
|
223 |
+
)
|
224 |
+
vis[out_mask] = 0
|
225 |
+
keypoints = np.concatenate((xy, vis), axis=-1)
|
226 |
+
targets[person_mask, 5:] = keypoints.reshape(person_targets.shape[0], -1)
|
227 |
+
|
228 |
+
# resize keypoint bbox sizes back to original
|
229 |
+
if n and kp_bbox is not None:
|
230 |
+
for i in range(int(targets[:, 0].max()) + 1):
|
231 |
+
if i > 0:
|
232 |
+
if isinstance(kp_bbox, list):
|
233 |
+
kp_bbox_i = kp_bbox[i - 1]
|
234 |
+
else:
|
235 |
+
kp_bbox_i = kp_bbox
|
236 |
+
|
237 |
+
kp_mask = targets[:, 0] == i
|
238 |
+
kp_targets = targets[kp_mask]
|
239 |
+
|
240 |
+
xc = kp_targets[:, [1, 3]].mean(axis=-1)
|
241 |
+
yc = kp_targets[:, [2, 4]].mean(axis=-1)
|
242 |
+
|
243 |
+
kp_targets[:, 1] = xc - (kp_bbox_i * width) / 2
|
244 |
+
kp_targets[:, 2] = yc - (kp_bbox_i * height) / 2
|
245 |
+
kp_targets[:, 3] = xc + (kp_bbox_i * width) / 2
|
246 |
+
kp_targets[:, 4] = yc + (kp_bbox_i * height) / 2
|
247 |
+
|
248 |
+
targets[kp_mask] = kp_targets
|
249 |
+
|
250 |
+
# clip
|
251 |
+
targets[:, [1, 3]] = targets[:, [1, 3]].clip(0, width)
|
252 |
+
targets[:, [2, 4]] = targets[:, [2, 4]].clip(0, height)
|
253 |
+
|
254 |
+
return im, targets
|
255 |
+
|
256 |
+
|
257 |
+
def copy_paste(im, labels, segments, p=0.5):
|
258 |
+
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
|
259 |
+
n = len(segments)
|
260 |
+
if p and n:
|
261 |
+
h, w, c = im.shape # height, width, channels
|
262 |
+
im_new = np.zeros(im.shape, np.uint8)
|
263 |
+
for j in random.sample(range(n), k=round(p * n)):
|
264 |
+
l, s = labels[j], segments[j]
|
265 |
+
box = w - l[3], l[2], w - l[1], l[4]
|
266 |
+
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
267 |
+
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
|
268 |
+
labels = np.concatenate((labels, [[l[0], *box]]), 0)
|
269 |
+
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
270 |
+
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
|
271 |
+
|
272 |
+
result = cv2.bitwise_and(src1=im, src2=im_new)
|
273 |
+
result = cv2.flip(result, 1) # augment segments (flip left-right)
|
274 |
+
i = result > 0 # pixels to replace
|
275 |
+
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
|
276 |
+
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
277 |
+
|
278 |
+
return im, labels, segments
|
279 |
+
|
280 |
+
|
281 |
+
def cutout(im, labels, p=0.5):
|
282 |
+
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
|
283 |
+
if random.random() < p:
|
284 |
+
h, w = im.shape[:2]
|
285 |
+
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
286 |
+
for s in scales:
|
287 |
+
mask_h = random.randint(1, int(h * s)) # create random masks
|
288 |
+
mask_w = random.randint(1, int(w * s))
|
289 |
+
|
290 |
+
# box
|
291 |
+
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
292 |
+
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
293 |
+
xmax = min(w, xmin + mask_w)
|
294 |
+
ymax = min(h, ymin + mask_h)
|
295 |
+
|
296 |
+
# apply random color mask
|
297 |
+
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
298 |
+
|
299 |
+
# return unobscured labels
|
300 |
+
if len(labels) and s > 0.03:
|
301 |
+
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
302 |
+
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
303 |
+
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
304 |
+
|
305 |
+
return labels
|
306 |
+
|
307 |
+
|
308 |
+
def mixup(im, labels, im2, labels2):
|
309 |
+
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
|
310 |
+
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
311 |
+
im = (im * r + im2 * (1 - r)).astype(np.uint8)
|
312 |
+
labels = np.concatenate((labels, labels2), 0)
|
313 |
+
return im, labels
|
314 |
+
|
315 |
+
|
316 |
+
def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
|
317 |
+
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
318 |
+
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
319 |
+
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
320 |
+
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
|
321 |
+
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
|
utils/autoanchor.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Auto-anchor utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import random
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import yaml
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
from utils.general import colorstr
|
14 |
+
|
15 |
+
|
16 |
+
def check_anchor_order(m):
|
17 |
+
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
18 |
+
a = m.anchor_grid.prod(-1).view(-1) # anchor area
|
19 |
+
da = a[-1] - a[0] # delta a
|
20 |
+
ds = m.stride[-1] - m.stride[0] # delta s
|
21 |
+
if da.sign() != ds.sign(): # same order
|
22 |
+
print('Reversing anchor order')
|
23 |
+
m.anchors[:] = m.anchors.flip(0)
|
24 |
+
m.anchor_grid[:] = m.anchor_grid.flip(0)
|
25 |
+
|
26 |
+
|
27 |
+
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
28 |
+
# Check anchor fit to data, recompute if necessary
|
29 |
+
prefix = colorstr('autoanchor: ')
|
30 |
+
print(f'\n{prefix}Analyzing anchors... ', end='')
|
31 |
+
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
32 |
+
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
33 |
+
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
34 |
+
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
35 |
+
|
36 |
+
def metric(k): # compute metric
|
37 |
+
r = wh[:, None] / k[None]
|
38 |
+
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
39 |
+
best = x.max(1)[0] # best_x
|
40 |
+
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
|
41 |
+
bpr = (best > 1. / thr).float().mean() # best possible recall
|
42 |
+
return bpr, aat
|
43 |
+
|
44 |
+
anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
|
45 |
+
bpr, aat = metric(anchors)
|
46 |
+
print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
|
47 |
+
if bpr < 0.98: # threshold to recompute
|
48 |
+
print('. Attempting to improve anchors, please wait...')
|
49 |
+
na = m.anchor_grid.numel() // 2 # number of anchors
|
50 |
+
try:
|
51 |
+
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
52 |
+
except Exception as e:
|
53 |
+
print(f'{prefix}ERROR: {e}')
|
54 |
+
new_bpr = metric(anchors)[0]
|
55 |
+
if new_bpr > bpr: # replace anchors
|
56 |
+
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
|
57 |
+
m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
|
58 |
+
m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
|
59 |
+
check_anchor_order(m)
|
60 |
+
print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
|
61 |
+
else:
|
62 |
+
print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
|
63 |
+
print('') # newline
|
64 |
+
|
65 |
+
|
66 |
+
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
67 |
+
""" Creates kmeans-evolved anchors from training dataset
|
68 |
+
|
69 |
+
Arguments:
|
70 |
+
dataset: path to data.yaml, or a loaded dataset
|
71 |
+
n: number of anchors
|
72 |
+
img_size: image size used for training
|
73 |
+
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
74 |
+
gen: generations to evolve anchors using genetic algorithm
|
75 |
+
verbose: print all results
|
76 |
+
|
77 |
+
Return:
|
78 |
+
k: kmeans evolved anchors
|
79 |
+
|
80 |
+
Usage:
|
81 |
+
from utils.autoanchor import *; _ = kmean_anchors()
|
82 |
+
"""
|
83 |
+
from scipy.cluster.vq import kmeans
|
84 |
+
|
85 |
+
thr = 1. / thr
|
86 |
+
prefix = colorstr('autoanchor: ')
|
87 |
+
|
88 |
+
def metric(k, wh): # compute metrics
|
89 |
+
r = wh[:, None] / k[None]
|
90 |
+
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
91 |
+
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
92 |
+
return x, x.max(1)[0] # x, best_x
|
93 |
+
|
94 |
+
def anchor_fitness(k): # mutation fitness
|
95 |
+
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
96 |
+
return (best * (best > thr).float()).mean() # fitness
|
97 |
+
|
98 |
+
def print_results(k):
|
99 |
+
k = k[np.argsort(k.prod(1))] # sort small to large
|
100 |
+
x, best = metric(k, wh0)
|
101 |
+
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
102 |
+
print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
|
103 |
+
print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
|
104 |
+
f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
|
105 |
+
for i, x in enumerate(k):
|
106 |
+
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
|
107 |
+
return k
|
108 |
+
|
109 |
+
if isinstance(dataset, str): # *.yaml file
|
110 |
+
with open(dataset, errors='ignore') as f:
|
111 |
+
data_dict = yaml.safe_load(f) # model dict
|
112 |
+
from utils.datasets import LoadImagesAndLabels
|
113 |
+
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
114 |
+
|
115 |
+
# Get label wh
|
116 |
+
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
117 |
+
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
118 |
+
|
119 |
+
# Filter
|
120 |
+
i = (wh0 < 3.0).any(1).sum()
|
121 |
+
if i:
|
122 |
+
print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
|
123 |
+
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
|
124 |
+
# wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
125 |
+
|
126 |
+
# Kmeans calculation
|
127 |
+
print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
|
128 |
+
s = wh.std(0) # sigmas for whitening
|
129 |
+
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
130 |
+
assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
|
131 |
+
k *= s
|
132 |
+
wh = torch.tensor(wh, dtype=torch.float32) # filtered
|
133 |
+
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
|
134 |
+
k = print_results(k)
|
135 |
+
|
136 |
+
# Plot
|
137 |
+
# k, d = [None] * 20, [None] * 20
|
138 |
+
# for i in tqdm(range(1, 21)):
|
139 |
+
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
140 |
+
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
|
141 |
+
# ax = ax.ravel()
|
142 |
+
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
143 |
+
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
144 |
+
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
145 |
+
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
146 |
+
# fig.savefig('wh.png', dpi=200)
|
147 |
+
|
148 |
+
# Evolve
|
149 |
+
npr = np.random
|
150 |
+
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
151 |
+
pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
|
152 |
+
for _ in pbar:
|
153 |
+
v = np.ones(sh)
|
154 |
+
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
155 |
+
v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
156 |
+
kg = (k.copy() * v).clip(min=2.0)
|
157 |
+
fg = anchor_fitness(kg)
|
158 |
+
if fg > f:
|
159 |
+
f, k = fg, kg.copy()
|
160 |
+
pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
|
161 |
+
if verbose:
|
162 |
+
print_results(k)
|
163 |
+
|
164 |
+
return print_results(k)
|
utils/callbacks.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Callback utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
|
7 |
+
class Callbacks:
|
8 |
+
""""
|
9 |
+
Handles all registered callbacks for YOLOv5 Hooks
|
10 |
+
"""
|
11 |
+
|
12 |
+
_callbacks = {
|
13 |
+
'on_pretrain_routine_start': [],
|
14 |
+
'on_pretrain_routine_end': [],
|
15 |
+
|
16 |
+
'on_train_start': [],
|
17 |
+
'on_train_epoch_start': [],
|
18 |
+
'on_train_batch_start': [],
|
19 |
+
'optimizer_step': [],
|
20 |
+
'on_before_zero_grad': [],
|
21 |
+
'on_train_batch_end': [],
|
22 |
+
'on_train_epoch_end': [],
|
23 |
+
|
24 |
+
'on_val_start': [],
|
25 |
+
'on_val_batch_start': [],
|
26 |
+
'on_val_image_end': [],
|
27 |
+
'on_val_batch_end': [],
|
28 |
+
'on_val_end': [],
|
29 |
+
|
30 |
+
'on_fit_epoch_end': [], # fit = train + val
|
31 |
+
'on_model_save': [],
|
32 |
+
'on_train_end': [],
|
33 |
+
|
34 |
+
'teardown': [],
|
35 |
+
}
|
36 |
+
|
37 |
+
def __init__(self):
|
38 |
+
return
|
39 |
+
|
40 |
+
def register_action(self, hook, name='', callback=None):
|
41 |
+
"""
|
42 |
+
Register a new action to a callback hook
|
43 |
+
|
44 |
+
Args:
|
45 |
+
hook The callback hook name to register the action to
|
46 |
+
name The name of the action
|
47 |
+
callback The callback to fire
|
48 |
+
"""
|
49 |
+
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
50 |
+
assert callable(callback), f"callback '{callback}' is not callable"
|
51 |
+
self._callbacks[hook].append({'name': name, 'callback': callback})
|
52 |
+
|
53 |
+
def get_registered_actions(self, hook=None):
|
54 |
+
""""
|
55 |
+
Returns all the registered actions by callback hook
|
56 |
+
|
57 |
+
Args:
|
58 |
+
hook The name of the hook to check, defaults to all
|
59 |
+
"""
|
60 |
+
if hook:
|
61 |
+
return self._callbacks[hook]
|
62 |
+
else:
|
63 |
+
return self._callbacks
|
64 |
+
|
65 |
+
def run_callbacks(self, hook, *args, **kwargs):
|
66 |
+
"""
|
67 |
+
Loop through the registered actions and fire all callbacks
|
68 |
+
"""
|
69 |
+
for logger in self._callbacks[hook]:
|
70 |
+
# print(f"Running callbacks.{logger['callback'].__name__}()")
|
71 |
+
logger['callback'](*args, **kwargs)
|
72 |
+
|
73 |
+
def on_pretrain_routine_start(self, *args, **kwargs):
|
74 |
+
"""
|
75 |
+
Fires all registered callbacks at the start of each pretraining routine
|
76 |
+
"""
|
77 |
+
self.run_callbacks('on_pretrain_routine_start', *args, **kwargs)
|
78 |
+
|
79 |
+
def on_pretrain_routine_end(self, *args, **kwargs):
|
80 |
+
"""
|
81 |
+
Fires all registered callbacks at the end of each pretraining routine
|
82 |
+
"""
|
83 |
+
self.run_callbacks('on_pretrain_routine_end', *args, **kwargs)
|
84 |
+
|
85 |
+
def on_train_start(self, *args, **kwargs):
|
86 |
+
"""
|
87 |
+
Fires all registered callbacks at the start of each training
|
88 |
+
"""
|
89 |
+
self.run_callbacks('on_train_start', *args, **kwargs)
|
90 |
+
|
91 |
+
def on_train_epoch_start(self, *args, **kwargs):
|
92 |
+
"""
|
93 |
+
Fires all registered callbacks at the start of each training epoch
|
94 |
+
"""
|
95 |
+
self.run_callbacks('on_train_epoch_start', *args, **kwargs)
|
96 |
+
|
97 |
+
def on_train_batch_start(self, *args, **kwargs):
|
98 |
+
"""
|
99 |
+
Fires all registered callbacks at the start of each training batch
|
100 |
+
"""
|
101 |
+
self.run_callbacks('on_train_batch_start', *args, **kwargs)
|
102 |
+
|
103 |
+
def optimizer_step(self, *args, **kwargs):
|
104 |
+
"""
|
105 |
+
Fires all registered callbacks on each optimizer step
|
106 |
+
"""
|
107 |
+
self.run_callbacks('optimizer_step', *args, **kwargs)
|
108 |
+
|
109 |
+
def on_before_zero_grad(self, *args, **kwargs):
|
110 |
+
"""
|
111 |
+
Fires all registered callbacks before zero grad
|
112 |
+
"""
|
113 |
+
self.run_callbacks('on_before_zero_grad', *args, **kwargs)
|
114 |
+
|
115 |
+
def on_train_batch_end(self, *args, **kwargs):
|
116 |
+
"""
|
117 |
+
Fires all registered callbacks at the end of each training batch
|
118 |
+
"""
|
119 |
+
self.run_callbacks('on_train_batch_end', *args, **kwargs)
|
120 |
+
|
121 |
+
def on_train_epoch_end(self, *args, **kwargs):
|
122 |
+
"""
|
123 |
+
Fires all registered callbacks at the end of each training epoch
|
124 |
+
"""
|
125 |
+
self.run_callbacks('on_train_epoch_end', *args, **kwargs)
|
126 |
+
|
127 |
+
def on_val_start(self, *args, **kwargs):
|
128 |
+
"""
|
129 |
+
Fires all registered callbacks at the start of the validation
|
130 |
+
"""
|
131 |
+
self.run_callbacks('on_val_start', *args, **kwargs)
|
132 |
+
|
133 |
+
def on_val_batch_start(self, *args, **kwargs):
|
134 |
+
"""
|
135 |
+
Fires all registered callbacks at the start of each validation batch
|
136 |
+
"""
|
137 |
+
self.run_callbacks('on_val_batch_start', *args, **kwargs)
|
138 |
+
|
139 |
+
def on_val_image_end(self, *args, **kwargs):
|
140 |
+
"""
|
141 |
+
Fires all registered callbacks at the end of each val image
|
142 |
+
"""
|
143 |
+
self.run_callbacks('on_val_image_end', *args, **kwargs)
|
144 |
+
|
145 |
+
def on_val_batch_end(self, *args, **kwargs):
|
146 |
+
"""
|
147 |
+
Fires all registered callbacks at the end of each validation batch
|
148 |
+
"""
|
149 |
+
self.run_callbacks('on_val_batch_end', *args, **kwargs)
|
150 |
+
|
151 |
+
def on_val_end(self, *args, **kwargs):
|
152 |
+
"""
|
153 |
+
Fires all registered callbacks at the end of the validation
|
154 |
+
"""
|
155 |
+
self.run_callbacks('on_val_end', *args, **kwargs)
|
156 |
+
|
157 |
+
def on_fit_epoch_end(self, *args, **kwargs):
|
158 |
+
"""
|
159 |
+
Fires all registered callbacks at the end of each fit (train+val) epoch
|
160 |
+
"""
|
161 |
+
self.run_callbacks('on_fit_epoch_end', *args, **kwargs)
|
162 |
+
|
163 |
+
def on_model_save(self, *args, **kwargs):
|
164 |
+
"""
|
165 |
+
Fires all registered callbacks after each model save
|
166 |
+
"""
|
167 |
+
self.run_callbacks('on_model_save', *args, **kwargs)
|
168 |
+
|
169 |
+
def on_train_end(self, *args, **kwargs):
|
170 |
+
"""
|
171 |
+
Fires all registered callbacks at the end of training
|
172 |
+
"""
|
173 |
+
self.run_callbacks('on_train_end', *args, **kwargs)
|
174 |
+
|
175 |
+
def teardown(self, *args, **kwargs):
|
176 |
+
"""
|
177 |
+
Fires all registered callbacks before teardown
|
178 |
+
"""
|
179 |
+
self.run_callbacks('teardown', *args, **kwargs)
|
utils/datasets.py
ADDED
@@ -0,0 +1,1056 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Dataloaders and dataset utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import glob
|
7 |
+
import hashlib
|
8 |
+
import json
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import random
|
12 |
+
import shutil
|
13 |
+
import time
|
14 |
+
from itertools import repeat
|
15 |
+
from multiprocessing.pool import ThreadPool, Pool
|
16 |
+
from pathlib import Path
|
17 |
+
from threading import Thread
|
18 |
+
|
19 |
+
import cv2
|
20 |
+
import numpy as np
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import yaml
|
24 |
+
from PIL import Image, ExifTags
|
25 |
+
from torch.utils.data import Dataset
|
26 |
+
from tqdm import tqdm
|
27 |
+
|
28 |
+
from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective
|
29 |
+
from utils.general import check_requirements, check_file, check_dataset, xywh2xyxy, xywhn2xyxy, xyxy2xywhn, \
|
30 |
+
xyn2xy, segments2boxes, clean_str
|
31 |
+
from utils.torch_utils import torch_distributed_zero_first
|
32 |
+
|
33 |
+
# Parameters
|
34 |
+
HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
35 |
+
IMG_FORMATS = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes
|
36 |
+
VID_FORMATS = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
|
37 |
+
NUM_THREADS = os.cpu_count() # number of multiprocessing threads
|
38 |
+
|
39 |
+
|
40 |
+
# Get orientation exif tag
|
41 |
+
for orientation in ExifTags.TAGS.keys():
|
42 |
+
if ExifTags.TAGS[orientation] == 'Orientation':
|
43 |
+
break
|
44 |
+
|
45 |
+
|
46 |
+
def get_hash(paths):
|
47 |
+
# Returns a single hash value of a list of paths (files or dirs)
|
48 |
+
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
|
49 |
+
h = hashlib.md5(str(size).encode()) # hash sizes
|
50 |
+
h.update(''.join(paths).encode()) # hash paths
|
51 |
+
return h.hexdigest() # return hash
|
52 |
+
|
53 |
+
|
54 |
+
def exif_size(img):
|
55 |
+
# Returns exif-corrected PIL size
|
56 |
+
s = img.size # (width, height)
|
57 |
+
try:
|
58 |
+
rotation = dict(img._getexif().items())[orientation]
|
59 |
+
if rotation == 6: # rotation 270
|
60 |
+
s = (s[1], s[0])
|
61 |
+
elif rotation == 8: # rotation 90
|
62 |
+
s = (s[1], s[0])
|
63 |
+
except:
|
64 |
+
pass
|
65 |
+
|
66 |
+
return s
|
67 |
+
|
68 |
+
|
69 |
+
def exif_transpose(image):
|
70 |
+
"""
|
71 |
+
Transpose a PIL image accordingly if it has an EXIF Orientation tag.
|
72 |
+
From https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py
|
73 |
+
|
74 |
+
:param image: The image to transpose.
|
75 |
+
:return: An image.
|
76 |
+
"""
|
77 |
+
exif = image.getexif()
|
78 |
+
orientation = exif.get(0x0112, 1) # default 1
|
79 |
+
if orientation > 1:
|
80 |
+
method = {2: Image.FLIP_LEFT_RIGHT,
|
81 |
+
3: Image.ROTATE_180,
|
82 |
+
4: Image.FLIP_TOP_BOTTOM,
|
83 |
+
5: Image.TRANSPOSE,
|
84 |
+
6: Image.ROTATE_270,
|
85 |
+
7: Image.TRANSVERSE,
|
86 |
+
8: Image.ROTATE_90,
|
87 |
+
}.get(orientation)
|
88 |
+
if method is not None:
|
89 |
+
image = image.transpose(method)
|
90 |
+
del exif[0x0112]
|
91 |
+
image.info["exif"] = exif.tobytes()
|
92 |
+
return image
|
93 |
+
|
94 |
+
|
95 |
+
def create_dataloader(path, labels_dir, imgsz, batch_size, stride, single_cls=False, hyp=None, augment=False, cache=False, pad=0.0,
|
96 |
+
rect=False, rank=-1, workers=8, image_weights=False, quad=False, prefix='',
|
97 |
+
kp_flip=None, kp_bbox=None):
|
98 |
+
# Make sure only the first process in DDP process the dataset first, and the following others can use the cache
|
99 |
+
with torch_distributed_zero_first(rank):
|
100 |
+
dataset = LoadImagesAndLabels(path, labels_dir, imgsz, batch_size,
|
101 |
+
augment=augment, # augment images
|
102 |
+
hyp=hyp, # augmentation hyperparameters
|
103 |
+
rect=rect, # rectangular training
|
104 |
+
cache_images=cache,
|
105 |
+
single_cls=single_cls,
|
106 |
+
stride=int(stride),
|
107 |
+
pad=pad,
|
108 |
+
image_weights=image_weights,
|
109 |
+
prefix=prefix,
|
110 |
+
kp_flip=kp_flip,
|
111 |
+
kp_bbox=kp_bbox)
|
112 |
+
|
113 |
+
# for i in range(10):
|
114 |
+
# dataset.__getitem__(i)
|
115 |
+
# import sys
|
116 |
+
# sys.exit()
|
117 |
+
|
118 |
+
batch_size = min(batch_size, len(dataset))
|
119 |
+
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, workers]) # number of workers
|
120 |
+
sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
|
121 |
+
loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
|
122 |
+
# Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
|
123 |
+
dataloader = loader(dataset,
|
124 |
+
batch_size=batch_size,
|
125 |
+
num_workers=nw,
|
126 |
+
sampler=sampler,
|
127 |
+
pin_memory=True,
|
128 |
+
collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
|
129 |
+
return dataloader, dataset
|
130 |
+
|
131 |
+
|
132 |
+
class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
|
133 |
+
""" Dataloader that reuses workers
|
134 |
+
|
135 |
+
Uses same syntax as vanilla DataLoader
|
136 |
+
"""
|
137 |
+
|
138 |
+
def __init__(self, *args, **kwargs):
|
139 |
+
super().__init__(*args, **kwargs)
|
140 |
+
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
|
141 |
+
self.iterator = super().__iter__()
|
142 |
+
|
143 |
+
def __len__(self):
|
144 |
+
return len(self.batch_sampler.sampler)
|
145 |
+
|
146 |
+
def __iter__(self):
|
147 |
+
for i in range(len(self)):
|
148 |
+
yield next(self.iterator)
|
149 |
+
|
150 |
+
|
151 |
+
class _RepeatSampler(object):
|
152 |
+
""" Sampler that repeats forever
|
153 |
+
|
154 |
+
Args:
|
155 |
+
sampler (Sampler)
|
156 |
+
"""
|
157 |
+
|
158 |
+
def __init__(self, sampler):
|
159 |
+
self.sampler = sampler
|
160 |
+
|
161 |
+
def __iter__(self):
|
162 |
+
while True:
|
163 |
+
yield from iter(self.sampler)
|
164 |
+
|
165 |
+
|
166 |
+
class LoadImages: # for inference
|
167 |
+
def __init__(self, path, img_size=640, stride=32, auto=True):
|
168 |
+
p = str(Path(path).absolute()) # os-agnostic absolute path
|
169 |
+
if p.endswith('.txt'):
|
170 |
+
with open(p, 'r') as f:
|
171 |
+
files = f.readlines()
|
172 |
+
files = [l.strip() for l in files]
|
173 |
+
elif '*' in p:
|
174 |
+
files = sorted(glob.glob(p, recursive=True)) # glob
|
175 |
+
elif os.path.isdir(p):
|
176 |
+
files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
|
177 |
+
elif os.path.isfile(p):
|
178 |
+
files = [p] # files
|
179 |
+
else:
|
180 |
+
raise Exception(f'ERROR: {p} does not exist')
|
181 |
+
|
182 |
+
images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
|
183 |
+
videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
|
184 |
+
ni, nv = len(images), len(videos)
|
185 |
+
|
186 |
+
self.img_size = img_size
|
187 |
+
self.stride = stride
|
188 |
+
self.files = images + videos
|
189 |
+
self.nf = ni + nv # number of files
|
190 |
+
self.video_flag = [False] * ni + [True] * nv
|
191 |
+
self.mode = 'image'
|
192 |
+
self.auto = auto
|
193 |
+
if any(videos):
|
194 |
+
self.new_video(videos[0]) # new video
|
195 |
+
else:
|
196 |
+
self.cap = None
|
197 |
+
assert self.nf > 0, f'No images or videos found in {p}. ' \
|
198 |
+
f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
|
199 |
+
|
200 |
+
def __iter__(self):
|
201 |
+
self.count = 0
|
202 |
+
return self
|
203 |
+
|
204 |
+
def __next__(self):
|
205 |
+
if self.count == self.nf:
|
206 |
+
raise StopIteration
|
207 |
+
path = self.files[self.count]
|
208 |
+
|
209 |
+
if self.video_flag[self.count]:
|
210 |
+
# Read video
|
211 |
+
self.mode = 'video'
|
212 |
+
ret_val, img0 = self.cap.read()
|
213 |
+
if not ret_val:
|
214 |
+
self.count += 1
|
215 |
+
self.cap.release()
|
216 |
+
if self.count == self.nf: # last video
|
217 |
+
raise StopIteration
|
218 |
+
else:
|
219 |
+
path = self.files[self.count]
|
220 |
+
self.new_video(path)
|
221 |
+
ret_val, img0 = self.cap.read()
|
222 |
+
|
223 |
+
self.frame += 1
|
224 |
+
# print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ', end='')
|
225 |
+
|
226 |
+
else:
|
227 |
+
# Read image
|
228 |
+
self.count += 1
|
229 |
+
img0 = cv2.imread(path) # BGR
|
230 |
+
assert img0 is not None, 'Image Not Found ' + path
|
231 |
+
print(f'image {self.count}/{self.nf} {path}: ', end='')
|
232 |
+
|
233 |
+
# Padded resize
|
234 |
+
img = letterbox(img0, self.img_size, stride=self.stride, auto=self.auto)[0]
|
235 |
+
|
236 |
+
# Convert
|
237 |
+
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
238 |
+
img = np.ascontiguousarray(img)
|
239 |
+
|
240 |
+
return path, img, img0, self.cap
|
241 |
+
|
242 |
+
def new_video(self, path):
|
243 |
+
self.frame = 0
|
244 |
+
self.cap = cv2.VideoCapture(path)
|
245 |
+
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
246 |
+
|
247 |
+
def __len__(self):
|
248 |
+
return self.nf # number of files
|
249 |
+
|
250 |
+
|
251 |
+
class LoadWebcam: # for inference
|
252 |
+
def __init__(self, pipe='0', img_size=640, stride=32):
|
253 |
+
self.img_size = img_size
|
254 |
+
self.stride = stride
|
255 |
+
self.pipe = eval(pipe) if pipe.isnumeric() else pipe
|
256 |
+
self.cap = cv2.VideoCapture(self.pipe) # video capture object
|
257 |
+
self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
|
258 |
+
|
259 |
+
def __iter__(self):
|
260 |
+
self.count = -1
|
261 |
+
return self
|
262 |
+
|
263 |
+
def __next__(self):
|
264 |
+
self.count += 1
|
265 |
+
if cv2.waitKey(1) == ord('q'): # q to quit
|
266 |
+
self.cap.release()
|
267 |
+
cv2.destroyAllWindows()
|
268 |
+
raise StopIteration
|
269 |
+
|
270 |
+
# Read frame
|
271 |
+
ret_val, img0 = self.cap.read()
|
272 |
+
img0 = cv2.flip(img0, 1) # flip left-right
|
273 |
+
|
274 |
+
# Print
|
275 |
+
assert ret_val, f'Camera Error {self.pipe}'
|
276 |
+
img_path = 'webcam.jpg'
|
277 |
+
print(f'webcam {self.count}: ', end='')
|
278 |
+
|
279 |
+
# Padded resize
|
280 |
+
img = letterbox(img0, self.img_size, stride=self.stride)[0]
|
281 |
+
|
282 |
+
# Convert
|
283 |
+
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
284 |
+
img = np.ascontiguousarray(img)
|
285 |
+
|
286 |
+
return img_path, img, img0, None
|
287 |
+
|
288 |
+
def __len__(self):
|
289 |
+
return 0
|
290 |
+
|
291 |
+
|
292 |
+
class LoadStreams: # multiple IP or RTSP cameras
|
293 |
+
def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True):
|
294 |
+
self.mode = 'stream'
|
295 |
+
self.img_size = img_size
|
296 |
+
self.stride = stride
|
297 |
+
|
298 |
+
if os.path.isfile(sources):
|
299 |
+
with open(sources, 'r') as f:
|
300 |
+
sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
|
301 |
+
else:
|
302 |
+
sources = [sources]
|
303 |
+
|
304 |
+
n = len(sources)
|
305 |
+
self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
|
306 |
+
self.sources = [clean_str(x) for x in sources] # clean source names for later
|
307 |
+
self.auto = auto
|
308 |
+
for i, s in enumerate(sources): # index, source
|
309 |
+
# Start thread to read frames from video stream
|
310 |
+
print(f'{i + 1}/{n}: {s}... ', end='')
|
311 |
+
if 'youtube.com/' in s or 'youtu.be/' in s: # if source is YouTube video
|
312 |
+
check_requirements(('pafy', 'youtube_dl'))
|
313 |
+
import pafy
|
314 |
+
s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL
|
315 |
+
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
|
316 |
+
cap = cv2.VideoCapture(s)
|
317 |
+
assert cap.isOpened(), f'Failed to open {s}'
|
318 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
319 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
320 |
+
self.fps[i] = max(cap.get(cv2.CAP_PROP_FPS) % 100, 0) or 30.0 # 30 FPS fallback
|
321 |
+
self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
|
322 |
+
|
323 |
+
_, self.imgs[i] = cap.read() # guarantee first frame
|
324 |
+
self.threads[i] = Thread(target=self.update, args=([i, cap]), daemon=True)
|
325 |
+
print(f" success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
|
326 |
+
self.threads[i].start()
|
327 |
+
print('') # newline
|
328 |
+
|
329 |
+
# check for common shapes
|
330 |
+
s = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0].shape for x in self.imgs])
|
331 |
+
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
|
332 |
+
if not self.rect:
|
333 |
+
print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
|
334 |
+
|
335 |
+
def update(self, i, cap):
|
336 |
+
# Read stream `i` frames in daemon thread
|
337 |
+
n, f, read = 0, self.frames[i], 1 # frame number, frame array, inference every 'read' frame
|
338 |
+
while cap.isOpened() and n < f:
|
339 |
+
n += 1
|
340 |
+
# _, self.imgs[index] = cap.read()
|
341 |
+
cap.grab()
|
342 |
+
if n % read == 0:
|
343 |
+
success, im = cap.retrieve()
|
344 |
+
self.imgs[i] = im if success else self.imgs[i] * 0
|
345 |
+
time.sleep(1 / self.fps[i]) # wait time
|
346 |
+
|
347 |
+
def __iter__(self):
|
348 |
+
self.count = -1
|
349 |
+
return self
|
350 |
+
|
351 |
+
def __next__(self):
|
352 |
+
self.count += 1
|
353 |
+
if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
|
354 |
+
cv2.destroyAllWindows()
|
355 |
+
raise StopIteration
|
356 |
+
|
357 |
+
# Letterbox
|
358 |
+
img0 = self.imgs.copy()
|
359 |
+
img = [letterbox(x, self.img_size, stride=self.stride, auto=self.rect and self.auto)[0] for x in img0]
|
360 |
+
|
361 |
+
# Stack
|
362 |
+
img = np.stack(img, 0)
|
363 |
+
|
364 |
+
# Convert
|
365 |
+
img = img[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
|
366 |
+
img = np.ascontiguousarray(img)
|
367 |
+
|
368 |
+
return self.sources, img, img0, None
|
369 |
+
|
370 |
+
def __len__(self):
|
371 |
+
return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
|
372 |
+
|
373 |
+
|
374 |
+
def img2label_paths(img_paths, image_dir='images', labels_dir='labels'):
|
375 |
+
return [os.path.splitext(s.replace(image_dir, labels_dir))[0] + '.txt' for s in img_paths]
|
376 |
+
|
377 |
+
|
378 |
+
class LoadImagesAndLabels(Dataset): # for training/testing
|
379 |
+
def __init__(self, path, labels_dir='labels', img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
380 |
+
cache_images=False, single_cls=False, stride=32, pad=0.0, prefix='',
|
381 |
+
kp_flip=None, kp_bbox=None):
|
382 |
+
self.labels_dir = labels_dir
|
383 |
+
self.img_size = img_size
|
384 |
+
self.augment = augment
|
385 |
+
self.hyp = hyp
|
386 |
+
self.image_weights = image_weights
|
387 |
+
self.rect = False if image_weights else rect
|
388 |
+
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
|
389 |
+
self.mosaic_border = [-img_size // 2, -img_size // 2]
|
390 |
+
self.stride = stride
|
391 |
+
self.path = path
|
392 |
+
self.albumentations = Albumentations() if augment else None
|
393 |
+
self.kp_flip = kp_flip
|
394 |
+
self.kp_bbox = kp_bbox
|
395 |
+
self.num_coords = len(kp_flip) * 2
|
396 |
+
|
397 |
+
if self.kp_flip:
|
398 |
+
self.obj_flip = {0: 0}
|
399 |
+
for i in range(len(self.kp_flip)):
|
400 |
+
self.obj_flip[i + 1] = self.kp_flip[i] + 1
|
401 |
+
else:
|
402 |
+
self.obj_flip = None
|
403 |
+
|
404 |
+
try:
|
405 |
+
f = [] # image files
|
406 |
+
for p in path if isinstance(path, list) else [path]:
|
407 |
+
p = Path(p) # os-agnostic
|
408 |
+
if p.is_dir(): # dir
|
409 |
+
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
|
410 |
+
# f = list(p.rglob('**/*.*')) # pathlib
|
411 |
+
elif p.is_file(): # file
|
412 |
+
with open(p, 'r') as t:
|
413 |
+
t = t.read().strip().splitlines()
|
414 |
+
parent = str(p.parent) + os.sep
|
415 |
+
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
|
416 |
+
# f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
|
417 |
+
else:
|
418 |
+
raise Exception(f'{prefix}{p} does not exist')
|
419 |
+
self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS])
|
420 |
+
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib
|
421 |
+
assert self.img_files, f'{prefix}No images found'
|
422 |
+
except Exception as e:
|
423 |
+
raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}')
|
424 |
+
|
425 |
+
# Check cache
|
426 |
+
self.label_files = img2label_paths(self.img_files, labels_dir=self.labels_dir) # labels
|
427 |
+
cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
|
428 |
+
try:
|
429 |
+
cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict
|
430 |
+
assert cache['version'] == 0.4 and cache['hash'] == get_hash(self.label_files + self.img_files)
|
431 |
+
except:
|
432 |
+
cache, exists = self.cache_labels(cache_path, prefix), False # cache
|
433 |
+
|
434 |
+
# Display cache
|
435 |
+
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total
|
436 |
+
if exists:
|
437 |
+
d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
|
438 |
+
tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results
|
439 |
+
if cache['msgs']:
|
440 |
+
logging.info('\n'.join(cache['msgs'])) # display warnings
|
441 |
+
assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}'
|
442 |
+
|
443 |
+
# Read cache
|
444 |
+
[cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items
|
445 |
+
labels, shapes, self.segments = zip(*cache.values())
|
446 |
+
self.labels = list(labels)
|
447 |
+
self.shapes = np.array(shapes, dtype=np.float64)
|
448 |
+
self.img_files = list(cache.keys()) # update
|
449 |
+
self.label_files = img2label_paths(cache.keys(), labels_dir=self.labels_dir) # update
|
450 |
+
if single_cls:
|
451 |
+
for x in self.labels:
|
452 |
+
x[:, 0] = 0
|
453 |
+
|
454 |
+
n = len(shapes) # number of images
|
455 |
+
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
|
456 |
+
nb = bi[-1] + 1 # number of batches
|
457 |
+
self.batch = bi # batch index of image
|
458 |
+
self.n = n
|
459 |
+
self.indices = range(n)
|
460 |
+
|
461 |
+
# Rectangular Training
|
462 |
+
if self.rect:
|
463 |
+
# Sort by aspect ratio
|
464 |
+
s = self.shapes # wh
|
465 |
+
ar = s[:, 1] / s[:, 0] # aspect ratio
|
466 |
+
irect = ar.argsort()
|
467 |
+
self.img_files = [self.img_files[i] for i in irect]
|
468 |
+
self.label_files = [self.label_files[i] for i in irect]
|
469 |
+
self.labels = [self.labels[i] for i in irect]
|
470 |
+
self.shapes = s[irect] # wh
|
471 |
+
ar = ar[irect]
|
472 |
+
|
473 |
+
# Set training image shapes
|
474 |
+
shapes = [[1, 1]] * nb
|
475 |
+
for i in range(nb):
|
476 |
+
ari = ar[bi == i]
|
477 |
+
mini, maxi = ari.min(), ari.max()
|
478 |
+
if maxi < 1:
|
479 |
+
shapes[i] = [maxi, 1]
|
480 |
+
elif mini > 1:
|
481 |
+
shapes[i] = [1, 1 / mini]
|
482 |
+
|
483 |
+
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
|
484 |
+
|
485 |
+
# Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
|
486 |
+
self.imgs, self.img_npy = [None] * n, [None] * n
|
487 |
+
if cache_images:
|
488 |
+
if cache_images == 'disk':
|
489 |
+
self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy')
|
490 |
+
self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files]
|
491 |
+
self.im_cache_dir.mkdir(parents=True, exist_ok=True)
|
492 |
+
gb = 0 # Gigabytes of cached images
|
493 |
+
self.img_hw0, self.img_hw = [None] * n, [None] * n
|
494 |
+
results = ThreadPool(NUM_THREADS).imap(lambda x: load_image(*x), zip(repeat(self), range(n)))
|
495 |
+
pbar = tqdm(enumerate(results), total=n)
|
496 |
+
for i, x in pbar:
|
497 |
+
if cache_images == 'disk':
|
498 |
+
if not self.img_npy[i].exists():
|
499 |
+
np.save(self.img_npy[i].as_posix(), x[0])
|
500 |
+
gb += self.img_npy[i].stat().st_size
|
501 |
+
else:
|
502 |
+
self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
|
503 |
+
gb += self.imgs[i].nbytes
|
504 |
+
pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})'
|
505 |
+
pbar.close()
|
506 |
+
|
507 |
+
def cache_labels(self, path=Path('./labels.cache'), prefix=''):
|
508 |
+
# Cache dataset labels, check images and read shapes
|
509 |
+
x = {} # dict
|
510 |
+
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
|
511 |
+
desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
|
512 |
+
with Pool(NUM_THREADS) as pool:
|
513 |
+
pbar = tqdm(pool.imap_unordered(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix), repeat(self.num_coords))),
|
514 |
+
desc=desc, total=len(self.img_files))
|
515 |
+
for im_file, l, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
|
516 |
+
nm += nm_f
|
517 |
+
nf += nf_f
|
518 |
+
ne += ne_f
|
519 |
+
nc += nc_f
|
520 |
+
if im_file:
|
521 |
+
x[im_file] = [l, shape, segments]
|
522 |
+
if msg:
|
523 |
+
msgs.append(msg)
|
524 |
+
pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
|
525 |
+
|
526 |
+
pbar.close()
|
527 |
+
if msgs:
|
528 |
+
logging.info('\n'.join(msgs))
|
529 |
+
if nf == 0:
|
530 |
+
logging.info(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}')
|
531 |
+
x['hash'] = get_hash(self.label_files + self.img_files)
|
532 |
+
x['results'] = nf, nm, ne, nc, len(self.img_files)
|
533 |
+
x['msgs'] = msgs # warnings
|
534 |
+
x['version'] = 0.4 # cache version
|
535 |
+
try:
|
536 |
+
np.save(path, x) # save cache for next time
|
537 |
+
path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
|
538 |
+
logging.info(f'{prefix}New cache created: {path}')
|
539 |
+
except Exception as e:
|
540 |
+
logging.info(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # path not writeable
|
541 |
+
return x
|
542 |
+
|
543 |
+
def __len__(self):
|
544 |
+
return len(self.img_files)
|
545 |
+
|
546 |
+
# def __iter__(self):
|
547 |
+
# self.count = -1
|
548 |
+
# print('ran dataset iter')
|
549 |
+
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
550 |
+
# return self
|
551 |
+
|
552 |
+
def __getitem__(self, index):
|
553 |
+
index = self.indices[index] # linear, shuffled, or image_weights
|
554 |
+
|
555 |
+
hyp = self.hyp
|
556 |
+
mosaic = self.mosaic and random.random() < hyp['mosaic']
|
557 |
+
if mosaic:
|
558 |
+
# Load mosaic
|
559 |
+
img, labels = load_mosaic(self, index, kp_bbox=self.kp_bbox)
|
560 |
+
shapes = None
|
561 |
+
|
562 |
+
# MixUp augmentation
|
563 |
+
if random.random() < hyp['mixup']:
|
564 |
+
img, labels = mixup(img, labels, *load_mosaic(self, random.randint(0, self.n - 1)))
|
565 |
+
|
566 |
+
else:
|
567 |
+
# Load image
|
568 |
+
img, (h0, w0), (h, w) = load_image(self, index)
|
569 |
+
|
570 |
+
# Letterbox
|
571 |
+
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
572 |
+
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
573 |
+
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
574 |
+
|
575 |
+
labels = self.labels[index].copy()
|
576 |
+
if labels.size: # normalized xywh to pixel xyxy format
|
577 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
|
578 |
+
|
579 |
+
if self.augment:
|
580 |
+
img, labels = random_perspective(img, labels,
|
581 |
+
degrees=hyp['degrees'],
|
582 |
+
translate=hyp['translate'],
|
583 |
+
scale=hyp['scale'],
|
584 |
+
shear=hyp['shear'],
|
585 |
+
perspective=hyp['perspective'],
|
586 |
+
kp_bbox=self.kp_bbox)
|
587 |
+
|
588 |
+
nl = len(labels) # number of labels
|
589 |
+
if nl:
|
590 |
+
labels[:, 1:] = xyxy2xywhn(labels[:, 1:], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
|
591 |
+
|
592 |
+
if self.augment:
|
593 |
+
# Albumentations
|
594 |
+
img, labels = self.albumentations(img, labels)
|
595 |
+
nl = len(labels) # update after albumentations
|
596 |
+
|
597 |
+
# HSV color-space
|
598 |
+
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
|
599 |
+
|
600 |
+
# Flip up-down
|
601 |
+
if random.random() < hyp['flipud']:
|
602 |
+
img = np.flipud(img)
|
603 |
+
if nl:
|
604 |
+
labels[:, 2] = 1 - labels[:, 2]
|
605 |
+
|
606 |
+
# Flip left-right
|
607 |
+
if random.random() < hyp['fliplr']:
|
608 |
+
img = np.fliplr(img)
|
609 |
+
if nl:
|
610 |
+
labels[:, 1] = 1 - labels[:, 1]
|
611 |
+
|
612 |
+
if self.kp_flip and labels.shape[1] > 5:
|
613 |
+
labels[:, 5::3] = 1 - labels[:, 5::3] # flip keypoints in person object
|
614 |
+
keypoints = labels[:, 5:].reshape(nl, -1, 3)
|
615 |
+
keypoints = keypoints[:, self.kp_flip] # reorder left / right keypoints
|
616 |
+
labels[:, 5:] = keypoints.reshape(nl, -1)
|
617 |
+
|
618 |
+
if self.obj_flip:
|
619 |
+
for i, cls in enumerate(labels[:, 0]):
|
620 |
+
labels[i, 0] = self.obj_flip[labels[i, 0]]
|
621 |
+
|
622 |
+
# Cutouts
|
623 |
+
# labels = cutout(img, labels, p=0.5)
|
624 |
+
|
625 |
+
# img_h, img_w = img.shape[:2]
|
626 |
+
# img = img.copy()
|
627 |
+
# person_obj = labels[labels[:, 0] == 0]
|
628 |
+
# for lbl in person_obj:
|
629 |
+
# xc, yc, w, h = lbl[1:5].copy()
|
630 |
+
# pt1 = (int((xc - w / 2) * img_w), int((yc - h / 2) * img_h))
|
631 |
+
# pt2 = (int((xc + w / 2) * img_w), int((yc + h / 2) * img_h))
|
632 |
+
# cv2.rectangle(img, pt1, pt2, (255, 0, 255), thickness=2)
|
633 |
+
#
|
634 |
+
# kp = lbl[5:]
|
635 |
+
# kp = np.array(kp).reshape(-1, 3)
|
636 |
+
# kp[:, 0] = kp[:, 0] * img_w
|
637 |
+
# kp[:, 1] = kp[:, 1] * img_h
|
638 |
+
# for i, (x, y, v) in enumerate(kp):
|
639 |
+
# if v:
|
640 |
+
# if i in COCO_KP_LEFT:
|
641 |
+
# color = (0, 255, 255)
|
642 |
+
# else:
|
643 |
+
# color = (255, 255, 0)
|
644 |
+
# cv2.circle(img, (int(round(x)), int(round(y))), 2, color, thickness=2)
|
645 |
+
# # cv2.putText(img, COCO_KP_NAMES_SHORT[i], (int(round(x + 10)), int(round(y + 10))),
|
646 |
+
# # cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 0), thickness=1)
|
647 |
+
# cv2.imshow('', img)
|
648 |
+
# cv2.waitKey(0)
|
649 |
+
# cv2.destroyAllWindows()
|
650 |
+
|
651 |
+
labels_out = torch.zeros((nl, labels.shape[-1] + 1))
|
652 |
+
if nl:
|
653 |
+
labels_out[:, 1:] = torch.from_numpy(labels)
|
654 |
+
# Convert
|
655 |
+
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
656 |
+
img = np.ascontiguousarray(img)
|
657 |
+
|
658 |
+
return torch.from_numpy(img), labels_out, self.img_files[index], shapes
|
659 |
+
|
660 |
+
@staticmethod
|
661 |
+
def collate_fn(batch):
|
662 |
+
img, label, path, shapes = zip(*batch) # transposed
|
663 |
+
for i, l in enumerate(label):
|
664 |
+
l[:, 0] = i # add target image index for build_targets()
|
665 |
+
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
|
666 |
+
|
667 |
+
@staticmethod
|
668 |
+
def collate_fn4(batch):
|
669 |
+
img, label, path, shapes = zip(*batch) # transposed
|
670 |
+
n = len(shapes) // 4
|
671 |
+
img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
|
672 |
+
|
673 |
+
ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
|
674 |
+
wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
|
675 |
+
s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale
|
676 |
+
for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
|
677 |
+
i *= 4
|
678 |
+
if random.random() < 0.5:
|
679 |
+
im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
|
680 |
+
0].type(img[i].type())
|
681 |
+
l = label[i]
|
682 |
+
else:
|
683 |
+
im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
|
684 |
+
l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
|
685 |
+
img4.append(im)
|
686 |
+
label4.append(l)
|
687 |
+
|
688 |
+
for i, l in enumerate(label4):
|
689 |
+
l[:, 0] = i # add target image index for build_targets()
|
690 |
+
|
691 |
+
return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
|
692 |
+
|
693 |
+
|
694 |
+
# Ancillary functions --------------------------------------------------------------------------------------------------
|
695 |
+
def load_image(self, i):
|
696 |
+
# loads 1 image from dataset index 'i', returns im, original hw, resized hw
|
697 |
+
im = self.imgs[i]
|
698 |
+
if im is None: # not cached in ram
|
699 |
+
npy = self.img_npy[i]
|
700 |
+
if npy and npy.exists(): # load npy
|
701 |
+
im = np.load(npy)
|
702 |
+
else: # read image
|
703 |
+
path = self.img_files[i]
|
704 |
+
im = cv2.imread(path) # BGR
|
705 |
+
assert im is not None, 'Image Not Found ' + path
|
706 |
+
h0, w0 = im.shape[:2] # orig hw
|
707 |
+
r = self.img_size / max(h0, w0) # ratio
|
708 |
+
if r != 1: # if sizes are not equal
|
709 |
+
im = cv2.resize(im, (int(w0 * r), int(h0 * r)),
|
710 |
+
interpolation=cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR)
|
711 |
+
return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
|
712 |
+
else:
|
713 |
+
return self.imgs[i], self.img_hw0[i], self.img_hw[i] # im, hw_original, hw_resized
|
714 |
+
|
715 |
+
|
716 |
+
def load_mosaic(self, index, kp_bbox=None):
|
717 |
+
# loads images in a 4-mosaic
|
718 |
+
|
719 |
+
labels4, segments4 = [], []
|
720 |
+
s = self.img_size
|
721 |
+
yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
|
722 |
+
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
|
723 |
+
for i, index in enumerate(indices):
|
724 |
+
# Load image
|
725 |
+
img, _, (h, w) = load_image(self, index)
|
726 |
+
|
727 |
+
# place img in img4
|
728 |
+
if i == 0: # top left
|
729 |
+
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
730 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
731 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
732 |
+
elif i == 1: # top right
|
733 |
+
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
734 |
+
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
735 |
+
elif i == 2: # bottom left
|
736 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
737 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
738 |
+
elif i == 3: # bottom right
|
739 |
+
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
740 |
+
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
741 |
+
|
742 |
+
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
743 |
+
padw = x1a - x1b
|
744 |
+
padh = y1a - y1b
|
745 |
+
|
746 |
+
# Labels
|
747 |
+
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
748 |
+
if labels.size:
|
749 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
|
750 |
+
segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
|
751 |
+
labels4.append(labels)
|
752 |
+
segments4.extend(segments)
|
753 |
+
|
754 |
+
# Concat/clip labels
|
755 |
+
labels4 = np.concatenate(labels4, 0)
|
756 |
+
for x in (labels4[:, 1:], *segments4):
|
757 |
+
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
758 |
+
# img4, labels4 = replicate(img4, labels4) # replicate
|
759 |
+
|
760 |
+
# Augment
|
761 |
+
img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
|
762 |
+
img4, labels4 = random_perspective(img4, labels4, segments4,
|
763 |
+
degrees=self.hyp['degrees'],
|
764 |
+
translate=self.hyp['translate'],
|
765 |
+
scale=self.hyp['scale'],
|
766 |
+
shear=self.hyp['shear'],
|
767 |
+
perspective=self.hyp['perspective'],
|
768 |
+
border=self.mosaic_border,
|
769 |
+
kp_bbox=kp_bbox) # border to remove
|
770 |
+
|
771 |
+
return img4, labels4
|
772 |
+
|
773 |
+
|
774 |
+
def load_mosaic9(self, index):
|
775 |
+
# loads images in a 9-mosaic
|
776 |
+
|
777 |
+
labels9, segments9 = [], []
|
778 |
+
s = self.img_size
|
779 |
+
indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
|
780 |
+
for i, index in enumerate(indices):
|
781 |
+
# Load image
|
782 |
+
img, _, (h, w) = load_image(self, index)
|
783 |
+
|
784 |
+
# place img in img9
|
785 |
+
if i == 0: # center
|
786 |
+
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
787 |
+
h0, w0 = h, w
|
788 |
+
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
|
789 |
+
elif i == 1: # top
|
790 |
+
c = s, s - h, s + w, s
|
791 |
+
elif i == 2: # top right
|
792 |
+
c = s + wp, s - h, s + wp + w, s
|
793 |
+
elif i == 3: # right
|
794 |
+
c = s + w0, s, s + w0 + w, s + h
|
795 |
+
elif i == 4: # bottom right
|
796 |
+
c = s + w0, s + hp, s + w0 + w, s + hp + h
|
797 |
+
elif i == 5: # bottom
|
798 |
+
c = s + w0 - w, s + h0, s + w0, s + h0 + h
|
799 |
+
elif i == 6: # bottom left
|
800 |
+
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
|
801 |
+
elif i == 7: # left
|
802 |
+
c = s - w, s + h0 - h, s, s + h0
|
803 |
+
elif i == 8: # top left
|
804 |
+
c = s - w, s + h0 - hp - h, s, s + h0 - hp
|
805 |
+
|
806 |
+
padx, pady = c[:2]
|
807 |
+
x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords
|
808 |
+
|
809 |
+
# Labels
|
810 |
+
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
811 |
+
if labels.size:
|
812 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
|
813 |
+
segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
|
814 |
+
labels9.append(labels)
|
815 |
+
segments9.extend(segments)
|
816 |
+
|
817 |
+
# Image
|
818 |
+
img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
|
819 |
+
hp, wp = h, w # height, width previous
|
820 |
+
|
821 |
+
# Offset
|
822 |
+
yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y
|
823 |
+
img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
|
824 |
+
|
825 |
+
# Concat/clip labels
|
826 |
+
labels9 = np.concatenate(labels9, 0)
|
827 |
+
labels9[:, [1, 3]] -= xc
|
828 |
+
labels9[:, [2, 4]] -= yc
|
829 |
+
c = np.array([xc, yc]) # centers
|
830 |
+
segments9 = [x - c for x in segments9]
|
831 |
+
|
832 |
+
for x in (labels9[:, 1:], *segments9):
|
833 |
+
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
834 |
+
# img9, labels9 = replicate(img9, labels9) # replicate
|
835 |
+
|
836 |
+
# Augment
|
837 |
+
img9, labels9 = random_perspective(img9, labels9, segments9,
|
838 |
+
degrees=self.hyp['degrees'],
|
839 |
+
translate=self.hyp['translate'],
|
840 |
+
scale=self.hyp['scale'],
|
841 |
+
shear=self.hyp['shear'],
|
842 |
+
perspective=self.hyp['perspective'],
|
843 |
+
border=self.mosaic_border) # border to remove
|
844 |
+
|
845 |
+
return img9, labels9
|
846 |
+
|
847 |
+
|
848 |
+
def create_folder(path='./new'):
|
849 |
+
# Create folder
|
850 |
+
if os.path.exists(path):
|
851 |
+
shutil.rmtree(path) # delete output folder
|
852 |
+
os.makedirs(path) # make new output folder
|
853 |
+
|
854 |
+
|
855 |
+
def flatten_recursive(path='../datasets/coco128'):
|
856 |
+
# Flatten a recursive directory by bringing all files to top level
|
857 |
+
new_path = Path(path + '_flat')
|
858 |
+
create_folder(new_path)
|
859 |
+
for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
|
860 |
+
shutil.copyfile(file, new_path / Path(file).name)
|
861 |
+
|
862 |
+
|
863 |
+
def extract_boxes(path='../datasets/coco128', labels_dir='labels'): # from utils.datasets import *; extract_boxes()
|
864 |
+
# Convert detection dataset into classification dataset, with one directory per class
|
865 |
+
path = Path(path) # images dir
|
866 |
+
shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
|
867 |
+
files = list(path.rglob('*.*'))
|
868 |
+
n = len(files) # number of files
|
869 |
+
for im_file in tqdm(files, total=n):
|
870 |
+
if im_file.suffix[1:] in IMG_FORMATS:
|
871 |
+
# image
|
872 |
+
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
|
873 |
+
h, w = im.shape[:2]
|
874 |
+
|
875 |
+
# labels
|
876 |
+
lb_file = Path(img2label_paths([str(im_file)], labels_dir=labels_dir)[0])
|
877 |
+
if Path(lb_file).exists():
|
878 |
+
with open(lb_file, 'r') as f:
|
879 |
+
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
880 |
+
|
881 |
+
for j, x in enumerate(lb):
|
882 |
+
c = int(x[0]) # class
|
883 |
+
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
|
884 |
+
if not f.parent.is_dir():
|
885 |
+
f.parent.mkdir(parents=True)
|
886 |
+
|
887 |
+
b = x[1:] * [w, h, w, h] # box
|
888 |
+
# b[2:] = b[2:].max() # rectangle to square
|
889 |
+
b[2:] = b[2:] * 1.2 + 3 # pad
|
890 |
+
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
|
891 |
+
|
892 |
+
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
|
893 |
+
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
894 |
+
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
|
895 |
+
|
896 |
+
|
897 |
+
def autosplit(path='../datasets/coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False, labels_dir='labels_dir'):
|
898 |
+
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
|
899 |
+
Usage: from utils.datasets import *; autosplit()
|
900 |
+
Arguments
|
901 |
+
path: Path to images directory
|
902 |
+
weights: Train, val, test weights (list, tuple)
|
903 |
+
annotated_only: Only use images with an annotated txt file
|
904 |
+
"""
|
905 |
+
path = Path(path) # images dir
|
906 |
+
files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in IMG_FORMATS], []) # image files only
|
907 |
+
n = len(files) # number of files
|
908 |
+
random.seed(0) # for reproducibility
|
909 |
+
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
|
910 |
+
|
911 |
+
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
|
912 |
+
[(path.parent / x).unlink(missing_ok=True) for x in txt] # remove existing
|
913 |
+
|
914 |
+
print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
|
915 |
+
for i, img in tqdm(zip(indices, files), total=n):
|
916 |
+
if not annotated_only or Path(img2label_paths([str(img)], labels_dir='labels_dir')[0]).exists(): # check label
|
917 |
+
with open(path.parent / txt[i], 'a') as f:
|
918 |
+
f.write('./' + img.relative_to(path.parent).as_posix() + '\n') # add image to txt file
|
919 |
+
|
920 |
+
|
921 |
+
def verify_image_label(args):
|
922 |
+
# Verify one image-label pair
|
923 |
+
im_file, lb_file, prefix, num_coords = args
|
924 |
+
nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments
|
925 |
+
try:
|
926 |
+
# verify images
|
927 |
+
im = Image.open(im_file)
|
928 |
+
im.verify() # PIL verify
|
929 |
+
shape = exif_size(im) # image size
|
930 |
+
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
|
931 |
+
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
|
932 |
+
if im.format.lower() in ('jpg', 'jpeg'):
|
933 |
+
with open(im_file, 'rb') as f:
|
934 |
+
f.seek(-2, 2)
|
935 |
+
if f.read() != b'\xff\xd9': # corrupt JPEG
|
936 |
+
Image.open(im_file).save(im_file, format='JPEG', subsampling=0, quality=100) # re-save image
|
937 |
+
msg = f'{prefix}WARNING: corrupt JPEG restored and saved {im_file}'
|
938 |
+
|
939 |
+
# verify labels
|
940 |
+
if os.path.isfile(lb_file):
|
941 |
+
nf = 1 # label found
|
942 |
+
with open(lb_file, 'r') as f:
|
943 |
+
l = [x.split() for x in f.read().strip().splitlines() if len(x)]
|
944 |
+
# if any([len(x) > 8 for x in l]): # is segment
|
945 |
+
# classes = np.array([x[0] for x in l], dtype=np.float32)
|
946 |
+
# segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...)
|
947 |
+
# l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
|
948 |
+
l = np.array(l, dtype=np.float32)
|
949 |
+
if len(l):
|
950 |
+
# assert l.shape[1] == 5, 'labels require 5 columns each'
|
951 |
+
assert (l >= 0).all(), 'negative labels'
|
952 |
+
# assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
|
953 |
+
# assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
|
954 |
+
else:
|
955 |
+
ne = 1 # label empty
|
956 |
+
l = np.zeros((0, 5 + num_coords * 3 // 2), dtype=np.float32)
|
957 |
+
else:
|
958 |
+
nm = 1 # label missing
|
959 |
+
l = np.zeros((0, 5 + num_coords * 3 // 2), dtype=np.float32)
|
960 |
+
return im_file, l, shape, segments, nm, nf, ne, nc, msg
|
961 |
+
except Exception as e:
|
962 |
+
nc = 1
|
963 |
+
msg = f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}'
|
964 |
+
return [None, None, None, None, nm, nf, ne, nc, msg]
|
965 |
+
|
966 |
+
|
967 |
+
def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False, labels_dir='labels'):
|
968 |
+
""" Return dataset statistics dictionary with images and instances counts per split per class
|
969 |
+
To run in parent directory: export PYTHONPATH="$PWD/yolov5"
|
970 |
+
Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', autodownload=True)
|
971 |
+
Usage2: from utils.datasets import *; dataset_stats('../datasets/coco128_with_yaml.zip')
|
972 |
+
Arguments
|
973 |
+
path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
|
974 |
+
autodownload: Attempt to download dataset if not found locally
|
975 |
+
verbose: Print stats dictionary
|
976 |
+
"""
|
977 |
+
|
978 |
+
def round_labels(labels):
|
979 |
+
# Update labels to integer class and 6 decimal place floats
|
980 |
+
return [[int(c), *[round(x, 4) for x in points]] for c, *points in labels]
|
981 |
+
|
982 |
+
def unzip(path):
|
983 |
+
# Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/'
|
984 |
+
if str(path).endswith('.zip'): # path is data.zip
|
985 |
+
assert Path(path).is_file(), f'Error unzipping {path}, file not found'
|
986 |
+
assert os.system(f'unzip -q {path} -d {path.parent}') == 0, f'Error unzipping {path}'
|
987 |
+
dir = path.with_suffix('') # dataset directory
|
988 |
+
return True, str(dir), next(dir.rglob('*.yaml')) # zipped, data_dir, yaml_path
|
989 |
+
else: # path is data.yaml
|
990 |
+
return False, None, path
|
991 |
+
|
992 |
+
def hub_ops(f, max_dim=1920):
|
993 |
+
# HUB ops for 1 image 'f'
|
994 |
+
im = Image.open(f)
|
995 |
+
r = max_dim / max(im.height, im.width) # ratio
|
996 |
+
if r < 1.0: # image too large
|
997 |
+
im = im.resize((int(im.width * r), int(im.height * r)))
|
998 |
+
im.save(im_dir / Path(f).name, quality=75) # save
|
999 |
+
|
1000 |
+
zipped, data_dir, yaml_path = unzip(Path(path))
|
1001 |
+
with open(check_file(yaml_path), errors='ignore') as f:
|
1002 |
+
data = yaml.safe_load(f) # data dict
|
1003 |
+
if zipped:
|
1004 |
+
data['path'] = data_dir # TODO: should this be dir.resolve()?
|
1005 |
+
check_dataset(data, autodownload) # download dataset if missing
|
1006 |
+
hub_dir = Path(data['path'] + ('-hub' if hub else ''))
|
1007 |
+
stats = {'nc': data['nc'], 'names': data['names']} # statistics dictionary
|
1008 |
+
for split in 'train', 'val', 'test':
|
1009 |
+
if data.get(split) is None:
|
1010 |
+
stats[split] = None # i.e. no test set
|
1011 |
+
continue
|
1012 |
+
x = []
|
1013 |
+
dataset = LoadImagesAndLabels(data[split], labels_dir=labels_dir) # load dataset
|
1014 |
+
for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
|
1015 |
+
x.append(np.bincount(label[:, 0].astype(int), minlength=data['nc']))
|
1016 |
+
x = np.array(x) # shape(128x80)
|
1017 |
+
stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
|
1018 |
+
'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
|
1019 |
+
'per_class': (x > 0).sum(0).tolist()},
|
1020 |
+
'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in
|
1021 |
+
zip(dataset.img_files, dataset.labels)]}
|
1022 |
+
|
1023 |
+
if hub:
|
1024 |
+
im_dir = hub_dir / 'images'
|
1025 |
+
im_dir.mkdir(parents=True, exist_ok=True)
|
1026 |
+
for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.img_files), total=dataset.n, desc='HUB Ops'):
|
1027 |
+
pass
|
1028 |
+
|
1029 |
+
# Profile
|
1030 |
+
stats_path = hub_dir / 'stats.json'
|
1031 |
+
if profile:
|
1032 |
+
for _ in range(1):
|
1033 |
+
file = stats_path.with_suffix('.npy')
|
1034 |
+
t1 = time.time()
|
1035 |
+
np.save(file, stats)
|
1036 |
+
t2 = time.time()
|
1037 |
+
x = np.load(file, allow_pickle=True)
|
1038 |
+
print(f'stats.npy times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
|
1039 |
+
|
1040 |
+
file = stats_path.with_suffix('.json')
|
1041 |
+
t1 = time.time()
|
1042 |
+
with open(file, 'w') as f:
|
1043 |
+
json.dump(stats, f) # save stats *.json
|
1044 |
+
t2 = time.time()
|
1045 |
+
with open(file, 'r') as f:
|
1046 |
+
x = json.load(f) # load hyps dict
|
1047 |
+
print(f'stats.json times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
|
1048 |
+
|
1049 |
+
# Save, print and return
|
1050 |
+
if hub:
|
1051 |
+
print(f'Saving {stats_path.resolve()}...')
|
1052 |
+
with open(stats_path, 'w') as f:
|
1053 |
+
json.dump(stats, f) # save stats.json
|
1054 |
+
if verbose:
|
1055 |
+
print(json.dumps(stats, indent=2, sort_keys=False))
|
1056 |
+
return stats
|
utils/downloads.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Download utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import platform
|
8 |
+
import subprocess
|
9 |
+
import time
|
10 |
+
import urllib
|
11 |
+
from pathlib import Path
|
12 |
+
|
13 |
+
import requests
|
14 |
+
import torch
|
15 |
+
|
16 |
+
|
17 |
+
def gsutil_getsize(url=''):
|
18 |
+
# gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
|
19 |
+
s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
|
20 |
+
return eval(s.split(' ')[0]) if len(s) else 0 # bytes
|
21 |
+
|
22 |
+
|
23 |
+
def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
|
24 |
+
# Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
|
25 |
+
file = Path(file)
|
26 |
+
assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
|
27 |
+
try: # url1
|
28 |
+
print(f'Downloading {url} to {file}...')
|
29 |
+
torch.hub.download_url_to_file(url, str(file))
|
30 |
+
assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
|
31 |
+
except Exception as e: # url2
|
32 |
+
file.unlink(missing_ok=True) # remove partial downloads
|
33 |
+
print(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
|
34 |
+
os.system(f"curl -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
|
35 |
+
finally:
|
36 |
+
if not file.exists() or file.stat().st_size < min_bytes: # check
|
37 |
+
file.unlink(missing_ok=True) # remove partial downloads
|
38 |
+
print(f"ERROR: {assert_msg}\n{error_msg}")
|
39 |
+
print('')
|
40 |
+
|
41 |
+
|
42 |
+
def attempt_download(file, repo='ultralytics/yolov5'): # from utils.downloads import *; attempt_download()
|
43 |
+
# Attempt file download if does not exist
|
44 |
+
file = Path(str(file).strip().replace("'", ''))
|
45 |
+
|
46 |
+
if not file.exists():
|
47 |
+
# URL specified
|
48 |
+
name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
|
49 |
+
if str(file).startswith(('http:/', 'https:/')): # download
|
50 |
+
url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
|
51 |
+
name = name.split('?')[0] # parse authentication https://url.com/file.txt?auth...
|
52 |
+
safe_download(file=name, url=url, min_bytes=1E5)
|
53 |
+
return name
|
54 |
+
|
55 |
+
# GitHub assets
|
56 |
+
file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
|
57 |
+
try:
|
58 |
+
response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
|
59 |
+
assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
|
60 |
+
tag = response['tag_name'] # i.e. 'v1.0'
|
61 |
+
except: # fallback plan
|
62 |
+
assets = ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt',
|
63 |
+
'yolov5s6.pt', 'yolov5m6.pt', 'yolov5l6.pt', 'yolov5x6.pt']
|
64 |
+
try:
|
65 |
+
tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
|
66 |
+
except:
|
67 |
+
tag = 'v5.0' # current release
|
68 |
+
tag = 'v5.0' # download v5.0 models
|
69 |
+
if name in assets:
|
70 |
+
safe_download(file,
|
71 |
+
url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
|
72 |
+
# url2=f'https://storage.googleapis.com/{repo}/ckpt/{name}', # backup url (optional)
|
73 |
+
min_bytes=1E5,
|
74 |
+
error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/')
|
75 |
+
|
76 |
+
return str(file)
|
77 |
+
|
78 |
+
|
79 |
+
def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
|
80 |
+
# Downloads a file from Google Drive. from yolov5.utils.downloads import *; gdrive_download()
|
81 |
+
t = time.time()
|
82 |
+
file = Path(file)
|
83 |
+
cookie = Path('cookie') # gdrive cookie
|
84 |
+
print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
|
85 |
+
file.unlink(missing_ok=True) # remove existing file
|
86 |
+
cookie.unlink(missing_ok=True) # remove existing cookie
|
87 |
+
|
88 |
+
# Attempt file download
|
89 |
+
out = "NUL" if platform.system() == "Windows" else "/dev/null"
|
90 |
+
os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
|
91 |
+
if os.path.exists('cookie'): # large file
|
92 |
+
s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
|
93 |
+
else: # small file
|
94 |
+
s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
|
95 |
+
r = os.system(s) # execute, capture return
|
96 |
+
cookie.unlink(missing_ok=True) # remove existing cookie
|
97 |
+
|
98 |
+
# Error check
|
99 |
+
if r != 0:
|
100 |
+
file.unlink(missing_ok=True) # remove partial
|
101 |
+
print('Download error ') # raise Exception('Download error')
|
102 |
+
return r
|
103 |
+
|
104 |
+
# Unzip if archive
|
105 |
+
if file.suffix == '.zip':
|
106 |
+
print('unzipping... ', end='')
|
107 |
+
os.system(f'unzip -q {file}') # unzip
|
108 |
+
file.unlink() # remove zip to free space
|
109 |
+
|
110 |
+
print(f'Done ({time.time() - t:.1f}s)')
|
111 |
+
return r
|
112 |
+
|
113 |
+
|
114 |
+
def get_token(cookie="./cookie"):
|
115 |
+
with open(cookie) as f:
|
116 |
+
for line in f:
|
117 |
+
if "download" in line:
|
118 |
+
return line.split()[-1]
|
119 |
+
return ""
|
120 |
+
|
121 |
+
# Google utils: https://cloud.google.com/storage/docs/reference/libraries ----------------------------------------------
|
122 |
+
#
|
123 |
+
#
|
124 |
+
# def upload_blob(bucket_name, source_file_name, destination_blob_name):
|
125 |
+
# # Uploads a file to a bucket
|
126 |
+
# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
|
127 |
+
#
|
128 |
+
# storage_client = storage.Client()
|
129 |
+
# bucket = storage_client.get_bucket(bucket_name)
|
130 |
+
# blob = bucket.blob(destination_blob_name)
|
131 |
+
#
|
132 |
+
# blob.upload_from_filename(source_file_name)
|
133 |
+
#
|
134 |
+
# print('File {} uploaded to {}.'.format(
|
135 |
+
# source_file_name,
|
136 |
+
# destination_blob_name))
|
137 |
+
#
|
138 |
+
#
|
139 |
+
# def download_blob(bucket_name, source_blob_name, destination_file_name):
|
140 |
+
# # Uploads a blob from a bucket
|
141 |
+
# storage_client = storage.Client()
|
142 |
+
# bucket = storage_client.get_bucket(bucket_name)
|
143 |
+
# blob = bucket.blob(source_blob_name)
|
144 |
+
#
|
145 |
+
# blob.download_to_filename(destination_file_name)
|
146 |
+
#
|
147 |
+
# print('Blob {} downloaded to {}.'.format(
|
148 |
+
# source_blob_name,
|
149 |
+
# destination_file_name))
|
utils/general.py
ADDED
@@ -0,0 +1,853 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
General utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import contextlib
|
7 |
+
import glob
|
8 |
+
import logging
|
9 |
+
import math
|
10 |
+
import os
|
11 |
+
import platform
|
12 |
+
import random
|
13 |
+
import re
|
14 |
+
import signal
|
15 |
+
import time
|
16 |
+
import urllib
|
17 |
+
from itertools import repeat
|
18 |
+
from multiprocessing.pool import ThreadPool
|
19 |
+
from pathlib import Path
|
20 |
+
from subprocess import check_output
|
21 |
+
|
22 |
+
import cv2
|
23 |
+
import numpy as np
|
24 |
+
import pandas as pd
|
25 |
+
import pkg_resources as pkg
|
26 |
+
import torch
|
27 |
+
import torchvision
|
28 |
+
import yaml
|
29 |
+
|
30 |
+
from utils.downloads import gsutil_getsize
|
31 |
+
from utils.metrics import box_iou, fitness
|
32 |
+
from utils.torch_utils import init_torch_seeds
|
33 |
+
from utils.labels import write_kp_labels
|
34 |
+
|
35 |
+
# Settings
|
36 |
+
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
37 |
+
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
|
38 |
+
pd.options.display.max_columns = 10
|
39 |
+
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
|
40 |
+
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
|
41 |
+
|
42 |
+
|
43 |
+
class Profile(contextlib.ContextDecorator):
|
44 |
+
# Usage: @Profile() decorator or 'with Profile():' context manager
|
45 |
+
def __enter__(self):
|
46 |
+
self.start = time.time()
|
47 |
+
|
48 |
+
def __exit__(self, type, value, traceback):
|
49 |
+
print(f'Profile results: {time.time() - self.start:.5f}s')
|
50 |
+
|
51 |
+
|
52 |
+
class Timeout(contextlib.ContextDecorator):
|
53 |
+
# Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager
|
54 |
+
def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True):
|
55 |
+
self.seconds = int(seconds)
|
56 |
+
self.timeout_message = timeout_msg
|
57 |
+
self.suppress = bool(suppress_timeout_errors)
|
58 |
+
|
59 |
+
def _timeout_handler(self, signum, frame):
|
60 |
+
raise TimeoutError(self.timeout_message)
|
61 |
+
|
62 |
+
def __enter__(self):
|
63 |
+
signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM
|
64 |
+
signal.alarm(self.seconds) # start countdown for SIGALRM to be raised
|
65 |
+
|
66 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
67 |
+
signal.alarm(0) # Cancel SIGALRM if it's scheduled
|
68 |
+
if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError
|
69 |
+
return True
|
70 |
+
|
71 |
+
|
72 |
+
def try_except(func):
|
73 |
+
# try-except function. Usage: @try_except decorator
|
74 |
+
def handler(*args, **kwargs):
|
75 |
+
try:
|
76 |
+
func(*args, **kwargs)
|
77 |
+
except Exception as e:
|
78 |
+
print(e)
|
79 |
+
|
80 |
+
return handler
|
81 |
+
|
82 |
+
|
83 |
+
def methods(instance):
|
84 |
+
# Get class/instance methods
|
85 |
+
return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]
|
86 |
+
|
87 |
+
|
88 |
+
def set_logging(rank=-1, verbose=True):
|
89 |
+
logging.basicConfig(
|
90 |
+
format="%(message)s",
|
91 |
+
level=logging.INFO if (verbose and rank in [-1, 0]) else logging.WARN)
|
92 |
+
|
93 |
+
|
94 |
+
def init_seeds(seed=0):
|
95 |
+
# Initialize random number generator (RNG) seeds
|
96 |
+
random.seed(seed)
|
97 |
+
np.random.seed(seed)
|
98 |
+
init_torch_seeds(seed)
|
99 |
+
|
100 |
+
|
101 |
+
def get_latest_run(search_dir='.'):
|
102 |
+
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
|
103 |
+
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
|
104 |
+
return max(last_list, key=os.path.getctime) if last_list else ''
|
105 |
+
|
106 |
+
|
107 |
+
def is_docker():
|
108 |
+
# Is environment a Docker container?
|
109 |
+
return Path('/workspace').exists() # or Path('/.dockerenv').exists()
|
110 |
+
|
111 |
+
|
112 |
+
def is_colab():
|
113 |
+
# Is environment a Google Colab instance?
|
114 |
+
try:
|
115 |
+
import google.colab
|
116 |
+
return True
|
117 |
+
except Exception as e:
|
118 |
+
return False
|
119 |
+
|
120 |
+
|
121 |
+
def is_pip():
|
122 |
+
# Is file in a pip package?
|
123 |
+
return 'site-packages' in Path(__file__).absolute().parts
|
124 |
+
|
125 |
+
|
126 |
+
def is_ascii(s=''):
|
127 |
+
# Is string composed of all ASCII (no UTF) characters?
|
128 |
+
s = str(s) # convert list, tuple, None, etc. to str
|
129 |
+
return len(s.encode().decode('ascii', 'ignore')) == len(s)
|
130 |
+
|
131 |
+
|
132 |
+
def emojis(str=''):
|
133 |
+
# Return platform-dependent emoji-safe version of string
|
134 |
+
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
135 |
+
|
136 |
+
|
137 |
+
def file_size(file):
|
138 |
+
# Return file size in MB
|
139 |
+
return Path(file).stat().st_size / 1e6
|
140 |
+
|
141 |
+
|
142 |
+
def check_online():
|
143 |
+
# Check internet connectivity
|
144 |
+
import socket
|
145 |
+
try:
|
146 |
+
socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility
|
147 |
+
return True
|
148 |
+
except OSError:
|
149 |
+
return False
|
150 |
+
|
151 |
+
|
152 |
+
@try_except
|
153 |
+
def check_git_status():
|
154 |
+
# Recommend 'git pull' if code is out of date
|
155 |
+
msg = ', for updates see https://github.com/ultralytics/yolov5'
|
156 |
+
print(colorstr('github: '), end='')
|
157 |
+
assert Path('.git').exists(), 'skipping check (not a git repository)' + msg
|
158 |
+
assert not is_docker(), 'skipping check (Docker image)' + msg
|
159 |
+
assert check_online(), 'skipping check (offline)' + msg
|
160 |
+
|
161 |
+
cmd = 'git fetch && git config --get remote.origin.url'
|
162 |
+
url = check_output(cmd, shell=True, timeout=5).decode().strip().rstrip('.git') # git fetch
|
163 |
+
branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
|
164 |
+
n = int(check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
|
165 |
+
if n > 0:
|
166 |
+
s = f"⚠️ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use `git pull` or `git clone {url}` to update."
|
167 |
+
else:
|
168 |
+
s = f'up to date with {url} ✅'
|
169 |
+
print(emojis(s)) # emoji-safe
|
170 |
+
|
171 |
+
|
172 |
+
def check_python(minimum='3.6.2'):
|
173 |
+
# Check current python version vs. required python version
|
174 |
+
check_version(platform.python_version(), minimum, name='Python ')
|
175 |
+
|
176 |
+
|
177 |
+
def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False):
|
178 |
+
# Check version vs. required version
|
179 |
+
current, minimum = (pkg.parse_version(x) for x in (current, minimum))
|
180 |
+
result = (current == minimum) if pinned else (current >= minimum)
|
181 |
+
assert result, f'{name}{minimum} required by YOLOv5, but {name}{current} is currently installed'
|
182 |
+
|
183 |
+
|
184 |
+
@try_except
|
185 |
+
def check_requirements(requirements='requirements.txt', exclude=(), install=True):
|
186 |
+
# Check installed dependencies meet requirements (pass *.txt file or list of packages)
|
187 |
+
prefix = colorstr('red', 'bold', 'requirements:')
|
188 |
+
check_python() # check python version
|
189 |
+
if isinstance(requirements, (str, Path)): # requirements.txt file
|
190 |
+
file = Path(requirements)
|
191 |
+
assert file.exists(), f"{prefix} {file.resolve()} not found, check failed."
|
192 |
+
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
|
193 |
+
else: # list or tuple of packages
|
194 |
+
requirements = [x for x in requirements if x not in exclude]
|
195 |
+
|
196 |
+
n = 0 # number of packages updates
|
197 |
+
for r in requirements:
|
198 |
+
try:
|
199 |
+
pkg.require(r)
|
200 |
+
except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
|
201 |
+
s = f"{prefix} {r} not found and is required by YOLOv5"
|
202 |
+
if install:
|
203 |
+
print(f"{s}, attempting auto-update...")
|
204 |
+
try:
|
205 |
+
assert check_online(), f"'pip install {r}' skipped (offline)"
|
206 |
+
print(check_output(f"pip install '{r}'", shell=True).decode())
|
207 |
+
n += 1
|
208 |
+
except Exception as e:
|
209 |
+
print(f'{prefix} {e}')
|
210 |
+
else:
|
211 |
+
print(f'{s}. Please install and rerun your command.')
|
212 |
+
|
213 |
+
if n: # if packages updated
|
214 |
+
source = file.resolve() if 'file' in locals() else requirements
|
215 |
+
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
|
216 |
+
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
|
217 |
+
print(emojis(s))
|
218 |
+
|
219 |
+
|
220 |
+
def check_img_size(imgsz, s=32, floor=0):
|
221 |
+
# Verify image size is a multiple of stride s in each dimension
|
222 |
+
if isinstance(imgsz, int): # integer i.e. img_size=640
|
223 |
+
new_size = max(make_divisible(imgsz, int(s)), floor)
|
224 |
+
else: # list i.e. img_size=[640, 480]
|
225 |
+
new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
|
226 |
+
if new_size != imgsz:
|
227 |
+
print(f'WARNING: --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
|
228 |
+
return new_size
|
229 |
+
|
230 |
+
|
231 |
+
def check_imshow():
|
232 |
+
# Check if environment supports image displays
|
233 |
+
try:
|
234 |
+
assert not is_docker(), 'cv2.imshow() is disabled in Docker environments'
|
235 |
+
assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments'
|
236 |
+
cv2.imshow('test', np.zeros((1, 1, 3)))
|
237 |
+
cv2.waitKey(1)
|
238 |
+
cv2.destroyAllWindows()
|
239 |
+
cv2.waitKey(1)
|
240 |
+
return True
|
241 |
+
except Exception as e:
|
242 |
+
print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
|
243 |
+
return False
|
244 |
+
|
245 |
+
|
246 |
+
def check_file(file):
|
247 |
+
# Search/download file (if necessary) and return path
|
248 |
+
file = str(file) # convert to str()
|
249 |
+
if Path(file).is_file() or file == '': # exists
|
250 |
+
return file
|
251 |
+
elif file.startswith(('http:/', 'https:/')): # download
|
252 |
+
url = str(Path(file)).replace(':/', '://') # Pathlib turns :// -> :/
|
253 |
+
file = Path(urllib.parse.unquote(file)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth
|
254 |
+
print(f'Downloading {url} to {file}...')
|
255 |
+
torch.hub.download_url_to_file(url, file)
|
256 |
+
assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check
|
257 |
+
return file
|
258 |
+
else: # search
|
259 |
+
files = glob.glob('./**/' + file, recursive=True) # find file
|
260 |
+
assert len(files), f'File not found: {file}' # assert file was found
|
261 |
+
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
|
262 |
+
return files[0] # return file
|
263 |
+
|
264 |
+
|
265 |
+
def check_dataset(data, autodownload=True):
|
266 |
+
# Download and/or unzip dataset if not found locally
|
267 |
+
# Usage: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128_with_yaml.zip
|
268 |
+
|
269 |
+
# Download (optional)
|
270 |
+
extract_dir = ''
|
271 |
+
if isinstance(data, (str, Path)) and str(data).endswith('.zip'): # i.e. gs://bucket/dir/coco128.zip
|
272 |
+
download(data, dir='../datasets', unzip=True, delete=False, curl=False, threads=1)
|
273 |
+
data = next((Path('../datasets') / Path(data).stem).rglob('*.yaml'))
|
274 |
+
extract_dir, autodownload = data.parent, False
|
275 |
+
|
276 |
+
# Read yaml (optional)
|
277 |
+
if isinstance(data, (str, Path)):
|
278 |
+
with open(data, errors='ignore') as f:
|
279 |
+
data = yaml.safe_load(f) # dictionary
|
280 |
+
|
281 |
+
# Parse yaml
|
282 |
+
path = extract_dir or Path(data.get('path') or '') # optional 'path' default to '.'
|
283 |
+
for k in 'train', 'val', 'test':
|
284 |
+
if data.get(k): # prepend path
|
285 |
+
data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]]
|
286 |
+
|
287 |
+
assert 'nc' in data, "Dataset 'nc' key missing."
|
288 |
+
if 'names' not in data:
|
289 |
+
data['names'] = [f'class{i}' for i in range(data['nc'])] # assign class names if missing
|
290 |
+
train, val, test, s = [data.get(x) for x in ('train', 'val', 'test', 'download')]
|
291 |
+
if val:
|
292 |
+
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
|
293 |
+
if not all(x.exists() for x in val):
|
294 |
+
if 'kp_bbox' in data.keys():
|
295 |
+
print('Writing dataset labels to {}...'.format(os.path.join(data['path'], data['labels'])))
|
296 |
+
write_kp_labels(data)
|
297 |
+
else:
|
298 |
+
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
|
299 |
+
if s and autodownload: # download script
|
300 |
+
if s.startswith('http') and s.endswith('.zip'): # URL
|
301 |
+
f = Path(s).name # filename
|
302 |
+
print(f'Downloading {s} ...')
|
303 |
+
torch.hub.download_url_to_file(s, f)
|
304 |
+
root = path.parent if 'path' in data else '..' # unzip directory i.e. '../'
|
305 |
+
Path(root).mkdir(parents=True, exist_ok=True) # create root
|
306 |
+
r = os.system(f'unzip -q {f} -d {root} && rm {f}') # unzip
|
307 |
+
elif s.startswith('bash '): # bash script
|
308 |
+
print(f'Running {s} ...')
|
309 |
+
r = os.system(s)
|
310 |
+
else: # python script
|
311 |
+
r = exec(s, {'yaml': data}) # return None
|
312 |
+
print('Dataset autodownload %s\n' % ('success' if r in (0, None) else 'failure')) # print result
|
313 |
+
else:
|
314 |
+
raise Exception('Dataset not found.')
|
315 |
+
|
316 |
+
return data # dictionary
|
317 |
+
|
318 |
+
|
319 |
+
def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
|
320 |
+
# Multi-threaded file download and unzip function, used in data.yaml for autodownload
|
321 |
+
def download_one(url, dir):
|
322 |
+
# Download 1 file
|
323 |
+
f = dir / Path(url).name # filename
|
324 |
+
if Path(url).is_file(): # exists in current path
|
325 |
+
Path(url).rename(f) # move to dir
|
326 |
+
elif not f.exists():
|
327 |
+
print(f'Downloading {url} to {f}...')
|
328 |
+
if curl:
|
329 |
+
os.system(f"curl -L '{url}' -o '{f}' --retry 9 -C -") # curl download, retry and resume on fail
|
330 |
+
else:
|
331 |
+
torch.hub.download_url_to_file(url, f, progress=True) # torch download
|
332 |
+
if unzip and f.suffix in ('.zip', '.gz'):
|
333 |
+
print(f'Unzipping {f}...')
|
334 |
+
if f.suffix == '.zip':
|
335 |
+
s = f'unzip -qo {f} -d {dir}' # unzip -quiet -overwrite
|
336 |
+
elif f.suffix == '.gz':
|
337 |
+
s = f'tar xfz {f} --directory {f.parent}' # unzip
|
338 |
+
if delete: # delete zip file after unzip
|
339 |
+
s += f' && rm {f}'
|
340 |
+
os.system(s)
|
341 |
+
|
342 |
+
dir = Path(dir)
|
343 |
+
dir.mkdir(parents=True, exist_ok=True) # make directory
|
344 |
+
if threads > 1:
|
345 |
+
pool = ThreadPool(threads)
|
346 |
+
pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multi-threaded
|
347 |
+
pool.close()
|
348 |
+
pool.join()
|
349 |
+
else:
|
350 |
+
for u in [url] if isinstance(url, (str, Path)) else url:
|
351 |
+
download_one(u, dir)
|
352 |
+
|
353 |
+
|
354 |
+
def make_divisible(x, divisor):
|
355 |
+
# Returns x evenly divisible by divisor
|
356 |
+
return math.ceil(x / divisor) * divisor
|
357 |
+
|
358 |
+
|
359 |
+
def clean_str(s):
|
360 |
+
# Cleans a string by replacing special characters with underscore _
|
361 |
+
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
|
362 |
+
|
363 |
+
|
364 |
+
def one_cycle(y1=0.0, y2=1.0, steps=100):
|
365 |
+
# lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
|
366 |
+
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
|
367 |
+
|
368 |
+
|
369 |
+
def colorstr(*input):
|
370 |
+
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
|
371 |
+
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
|
372 |
+
colors = {'black': '\033[30m', # basic colors
|
373 |
+
'red': '\033[31m',
|
374 |
+
'green': '\033[32m',
|
375 |
+
'yellow': '\033[33m',
|
376 |
+
'blue': '\033[34m',
|
377 |
+
'magenta': '\033[35m',
|
378 |
+
'cyan': '\033[36m',
|
379 |
+
'white': '\033[37m',
|
380 |
+
'bright_black': '\033[90m', # bright colors
|
381 |
+
'bright_red': '\033[91m',
|
382 |
+
'bright_green': '\033[92m',
|
383 |
+
'bright_yellow': '\033[93m',
|
384 |
+
'bright_blue': '\033[94m',
|
385 |
+
'bright_magenta': '\033[95m',
|
386 |
+
'bright_cyan': '\033[96m',
|
387 |
+
'bright_white': '\033[97m',
|
388 |
+
'end': '\033[0m', # misc
|
389 |
+
'bold': '\033[1m',
|
390 |
+
'underline': '\033[4m'}
|
391 |
+
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
|
392 |
+
|
393 |
+
|
394 |
+
def labels_to_class_weights(labels, nc=80):
|
395 |
+
# Get class weights (inverse frequency) from training labels
|
396 |
+
if labels[0] is None: # no labels loaded
|
397 |
+
return torch.Tensor()
|
398 |
+
|
399 |
+
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
|
400 |
+
classes = labels[:, 0].astype(np.int) # labels = [class xywh]
|
401 |
+
weights = np.bincount(classes, minlength=nc) # occurrences per class
|
402 |
+
|
403 |
+
# Prepend gridpoint count (for uCE training)
|
404 |
+
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
|
405 |
+
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
|
406 |
+
|
407 |
+
weights[weights == 0] = 1 # replace empty bins with 1
|
408 |
+
weights = 1 / weights # number of targets per class
|
409 |
+
weights /= weights.sum() # normalize
|
410 |
+
return torch.from_numpy(weights)
|
411 |
+
|
412 |
+
|
413 |
+
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
|
414 |
+
# Produces image weights based on class_weights and image contents
|
415 |
+
class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
|
416 |
+
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
|
417 |
+
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
|
418 |
+
return image_weights
|
419 |
+
|
420 |
+
|
421 |
+
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
|
422 |
+
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
423 |
+
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
|
424 |
+
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
|
425 |
+
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
426 |
+
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
|
427 |
+
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
|
428 |
+
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
429 |
+
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
430 |
+
return x
|
431 |
+
|
432 |
+
|
433 |
+
def xyxy2xywh(x):
|
434 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
435 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
436 |
+
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
437 |
+
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
438 |
+
y[:, 2] = x[:, 2] - x[:, 0] # width
|
439 |
+
y[:, 3] = x[:, 3] - x[:, 1] # height
|
440 |
+
return y
|
441 |
+
|
442 |
+
|
443 |
+
def xywh2xyxy(x):
|
444 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
445 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
446 |
+
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
447 |
+
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
448 |
+
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
449 |
+
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
450 |
+
return y
|
451 |
+
|
452 |
+
|
453 |
+
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
454 |
+
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
455 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
456 |
+
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
|
457 |
+
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
|
458 |
+
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
|
459 |
+
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
|
460 |
+
|
461 |
+
# Convert keypoints from [x, y, v] normalized to [x, y]
|
462 |
+
if y.shape[-1] > 4:
|
463 |
+
nl = y.shape[0]
|
464 |
+
kp = y[:, 4:].reshape(nl, -1, 3)
|
465 |
+
kp[..., 0] *= w
|
466 |
+
kp[..., 0] += padw
|
467 |
+
kp[..., 1] *= h
|
468 |
+
kp[..., 1] += padh
|
469 |
+
y[:, 4:] = kp.reshape(nl, -1)
|
470 |
+
|
471 |
+
return y
|
472 |
+
|
473 |
+
|
474 |
+
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
|
475 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
|
476 |
+
if clip:
|
477 |
+
clip_coords(x, (h - eps, w - eps)) # warning: inplace clip
|
478 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
479 |
+
y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center
|
480 |
+
y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center
|
481 |
+
y[:, 2] = (x[:, 2] - x[:, 0]) / w # width
|
482 |
+
y[:, 3] = (x[:, 3] - x[:, 1]) / h # height
|
483 |
+
|
484 |
+
# convert keypoints from [x, y, v] to [x, y, v] normalized
|
485 |
+
if y.shape[-1] > 4:
|
486 |
+
nl = y.shape[0]
|
487 |
+
kp = y[:, 4:].reshape(nl, -1, 3)
|
488 |
+
kp[..., 0] /= w
|
489 |
+
kp[..., 1] /= h
|
490 |
+
y[:, 4:] = kp.reshape(nl, -1)
|
491 |
+
|
492 |
+
return y
|
493 |
+
|
494 |
+
|
495 |
+
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
496 |
+
# Convert normalized segments into pixel segments, shape (n,2)
|
497 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
498 |
+
y[:, 0] = w * x[:, 0] + padw # top left x
|
499 |
+
y[:, 1] = h * x[:, 1] + padh # top left y
|
500 |
+
return y
|
501 |
+
|
502 |
+
|
503 |
+
def segment2box(segment, width=640, height=640):
|
504 |
+
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
505 |
+
x, y = segment.T # segment xy
|
506 |
+
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
|
507 |
+
x, y, = x[inside], y[inside]
|
508 |
+
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
|
509 |
+
|
510 |
+
|
511 |
+
def segments2boxes(segments):
|
512 |
+
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
|
513 |
+
boxes = []
|
514 |
+
for s in segments:
|
515 |
+
x, y = s.T # segment xy
|
516 |
+
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
|
517 |
+
return xyxy2xywh(np.array(boxes)) # cls, xywh
|
518 |
+
|
519 |
+
|
520 |
+
def resample_segments(segments, n=1000):
|
521 |
+
# Up-sample an (n,2) segment
|
522 |
+
for i, s in enumerate(segments):
|
523 |
+
x = np.linspace(0, len(s) - 1, n)
|
524 |
+
xp = np.arange(len(s))
|
525 |
+
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
|
526 |
+
return segments
|
527 |
+
|
528 |
+
|
529 |
+
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
530 |
+
# Rescale coords (xyxy) from img1_shape to img0_shape
|
531 |
+
if ratio_pad is None: # calculate from img0_shape
|
532 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
533 |
+
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
534 |
+
else:
|
535 |
+
gain = ratio_pad[0][0]
|
536 |
+
pad = ratio_pad[1]
|
537 |
+
|
538 |
+
nl = coords.shape[0]
|
539 |
+
coords = coords.reshape((nl, -1, 2))
|
540 |
+
coords[..., 0] -= pad[0]
|
541 |
+
coords[..., 1] -= pad[1]
|
542 |
+
coords /= gain
|
543 |
+
coords = coords.reshape(nl, -1)
|
544 |
+
clip_coords(coords, img0_shape)
|
545 |
+
return coords
|
546 |
+
|
547 |
+
|
548 |
+
def clip_coords(boxes, shape):
|
549 |
+
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
550 |
+
if isinstance(boxes, torch.Tensor): # faster individually
|
551 |
+
boxes[:, 0].clamp_(0, shape[1]) # x1
|
552 |
+
boxes[:, 1].clamp_(0, shape[0]) # y1
|
553 |
+
boxes[:, 2].clamp_(0, shape[1]) # x2
|
554 |
+
boxes[:, 3].clamp_(0, shape[0]) # y2
|
555 |
+
else: # np.array (faster grouped)
|
556 |
+
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
|
557 |
+
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
|
558 |
+
|
559 |
+
|
560 |
+
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
|
561 |
+
labels=(), max_det=300):
|
562 |
+
"""Runs Non-Maximum Suppression (NMS) on inference results
|
563 |
+
|
564 |
+
Returns:
|
565 |
+
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
566 |
+
"""
|
567 |
+
|
568 |
+
nc = prediction.shape[2] - 5 # number of classes
|
569 |
+
xc = prediction[..., 4] > conf_thres # candidates
|
570 |
+
|
571 |
+
# Checks
|
572 |
+
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
|
573 |
+
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
|
574 |
+
|
575 |
+
# Settings
|
576 |
+
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
577 |
+
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
578 |
+
time_limit = 10.0 # seconds to quit after
|
579 |
+
redundant = True # require redundant detections
|
580 |
+
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
581 |
+
merge = False # use merge-NMS
|
582 |
+
|
583 |
+
t = time.time()
|
584 |
+
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
|
585 |
+
for xi, x in enumerate(prediction): # image index, image inference
|
586 |
+
# Apply constraints
|
587 |
+
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
588 |
+
x = x[xc[xi]] # confidence
|
589 |
+
|
590 |
+
# Cat apriori labels if autolabelling
|
591 |
+
if labels and len(labels[xi]):
|
592 |
+
l = labels[xi]
|
593 |
+
v = torch.zeros((len(l), nc + 5), device=x.device)
|
594 |
+
v[:, :4] = l[:, 1:5] # box
|
595 |
+
v[:, 4] = 1.0 # conf
|
596 |
+
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
|
597 |
+
x = torch.cat((x, v), 0)
|
598 |
+
|
599 |
+
# If none remain process next image
|
600 |
+
if not x.shape[0]:
|
601 |
+
continue
|
602 |
+
|
603 |
+
# Compute conf
|
604 |
+
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
605 |
+
|
606 |
+
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
607 |
+
box = xywh2xyxy(x[:, :4])
|
608 |
+
|
609 |
+
# Detections matrix nx6 (xyxy, conf, cls)
|
610 |
+
if multi_label:
|
611 |
+
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
612 |
+
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
613 |
+
else: # best class only
|
614 |
+
conf, j = x[:, 5:].max(1, keepdim=True)
|
615 |
+
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
|
616 |
+
|
617 |
+
# Filter by class
|
618 |
+
if classes is not None:
|
619 |
+
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
620 |
+
|
621 |
+
# Apply finite constraint
|
622 |
+
# if not torch.isfinite(x).all():
|
623 |
+
# x = x[torch.isfinite(x).all(1)]
|
624 |
+
|
625 |
+
# Check shape
|
626 |
+
n = x.shape[0] # number of boxes
|
627 |
+
if not n: # no boxes
|
628 |
+
continue
|
629 |
+
elif n > max_nms: # excess boxes
|
630 |
+
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
631 |
+
|
632 |
+
# Batched NMS
|
633 |
+
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
634 |
+
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
635 |
+
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
636 |
+
if i.shape[0] > max_det: # limit detections
|
637 |
+
i = i[:max_det]
|
638 |
+
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
639 |
+
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
640 |
+
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
641 |
+
weights = iou * scores[None] # box weights
|
642 |
+
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
643 |
+
if redundant:
|
644 |
+
i = i[iou.sum(1) > 1] # require redundancy
|
645 |
+
|
646 |
+
output[xi] = x[i]
|
647 |
+
if (time.time() - t) > time_limit:
|
648 |
+
print(f'WARNING: NMS time limit {time_limit}s exceeded')
|
649 |
+
break # time limit exceeded
|
650 |
+
|
651 |
+
return output
|
652 |
+
|
653 |
+
|
654 |
+
def non_max_suppression_kp(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, max_det=300, num_coords=34):
|
655 |
+
"""Runs Non-Maximum Suppression (NMS) on inference results
|
656 |
+
|
657 |
+
Returns:
|
658 |
+
list of detections, on (n,6) tensor per image [xyxy, conf, cls, keypoints]
|
659 |
+
"""
|
660 |
+
|
661 |
+
nc = prediction.shape[2] - 5 - num_coords # number of classes
|
662 |
+
xc = prediction[..., 4] > conf_thres # candidates
|
663 |
+
|
664 |
+
# Checks
|
665 |
+
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
|
666 |
+
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
|
667 |
+
|
668 |
+
# Settings
|
669 |
+
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
670 |
+
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
671 |
+
time_limit = 10.0 # seconds to quit after
|
672 |
+
redundant = True # require redundant detections
|
673 |
+
merge = False # use merge-NMS
|
674 |
+
|
675 |
+
t = time.time()
|
676 |
+
output = [torch.zeros((0, 6 + num_coords), device=prediction.device)] * prediction.shape[0]
|
677 |
+
for xi, x in enumerate(prediction): # image index, image inference
|
678 |
+
# Apply constraints
|
679 |
+
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
680 |
+
x = x[xc[xi]] # confidence
|
681 |
+
|
682 |
+
# If none remain process next image
|
683 |
+
if not x.shape[0]:
|
684 |
+
continue
|
685 |
+
|
686 |
+
# Compute conf
|
687 |
+
x[:, 5:-num_coords] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
688 |
+
|
689 |
+
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
690 |
+
box = xywh2xyxy(x[:, :4])
|
691 |
+
|
692 |
+
# Detections matrix nx6 (xyxy, conf, cls)
|
693 |
+
conf, j = x[:, 5:-num_coords].max(1, keepdim=True)
|
694 |
+
kp = x[:, -num_coords:]
|
695 |
+
x = torch.cat((box, conf, j.float(), kp), 1)[conf.view(-1) > conf_thres]
|
696 |
+
|
697 |
+
# Filter by class
|
698 |
+
if classes is not None:
|
699 |
+
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
700 |
+
|
701 |
+
# Apply finite constraint
|
702 |
+
# if not torch.isfinite(x).all():
|
703 |
+
# x = x[torch.isfinite(x).all(1)]
|
704 |
+
|
705 |
+
# Check shape
|
706 |
+
n = x.shape[0] # number of boxes
|
707 |
+
if not n: # no boxes
|
708 |
+
continue
|
709 |
+
elif n > max_nms: # excess boxes
|
710 |
+
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
711 |
+
|
712 |
+
# Batched NMS
|
713 |
+
c = x[:, 5:6] * max_wh # classes
|
714 |
+
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
715 |
+
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
716 |
+
if i.shape[0] > max_det: # limit detections
|
717 |
+
i = i[:max_det]
|
718 |
+
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
719 |
+
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
720 |
+
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
721 |
+
weights = iou * scores[None] # box weights
|
722 |
+
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
723 |
+
if redundant:
|
724 |
+
i = i[iou.sum(1) > 1] # require redundancy
|
725 |
+
|
726 |
+
output[xi] = x[i]
|
727 |
+
if (time.time() - t) > time_limit:
|
728 |
+
print(f'WARNING: NMS time limit {time_limit}s exceeded')
|
729 |
+
break # time limit exceeded
|
730 |
+
|
731 |
+
return output
|
732 |
+
|
733 |
+
|
734 |
+
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
|
735 |
+
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
736 |
+
x = torch.load(f, map_location=torch.device('cpu'))
|
737 |
+
if x.get('ema'):
|
738 |
+
x['model'] = x['ema'] # replace model with ema
|
739 |
+
for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
|
740 |
+
x[k] = None
|
741 |
+
x['epoch'] = -1
|
742 |
+
x['model'].half() # to FP16
|
743 |
+
for p in x['model'].parameters():
|
744 |
+
p.requires_grad = False
|
745 |
+
torch.save(x, s or f)
|
746 |
+
mb = os.path.getsize(s or f) / 1E6 # filesize
|
747 |
+
print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
|
748 |
+
|
749 |
+
|
750 |
+
def print_mutation(results, hyp, save_dir, bucket):
|
751 |
+
evolve_csv, results_csv, evolve_yaml = save_dir / 'evolve.csv', save_dir / 'results.csv', save_dir / 'hyp_evolve.yaml'
|
752 |
+
keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
|
753 |
+
'val/box_loss', 'val/obj_loss', 'val/cls_loss') + tuple(hyp.keys()) # [results + hyps]
|
754 |
+
keys = tuple(x.strip() for x in keys)
|
755 |
+
vals = results + tuple(hyp.values())
|
756 |
+
n = len(keys)
|
757 |
+
|
758 |
+
# Download (optional)
|
759 |
+
if bucket:
|
760 |
+
url = f'gs://{bucket}/evolve.csv'
|
761 |
+
if gsutil_getsize(url) > (os.path.getsize(evolve_csv) if os.path.exists(evolve_csv) else 0):
|
762 |
+
os.system(f'gsutil cp {url} {save_dir}') # download evolve.csv if larger than local
|
763 |
+
|
764 |
+
# Log to evolve.csv
|
765 |
+
s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header
|
766 |
+
with open(evolve_csv, 'a') as f:
|
767 |
+
f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n')
|
768 |
+
|
769 |
+
# Print to screen
|
770 |
+
print(colorstr('evolve: ') + ', '.join(f'{x.strip():>20s}' for x in keys))
|
771 |
+
print(colorstr('evolve: ') + ', '.join(f'{x:20.5g}' for x in vals), end='\n\n\n')
|
772 |
+
|
773 |
+
# Save yaml
|
774 |
+
with open(evolve_yaml, 'w') as f:
|
775 |
+
data = pd.read_csv(evolve_csv)
|
776 |
+
data = data.rename(columns=lambda x: x.strip()) # strip keys
|
777 |
+
i = np.argmax(fitness(data.values[:, :7])) #
|
778 |
+
f.write(f'# YOLOv5 Hyperparameter Evolution Results\n' +
|
779 |
+
f'# Best generation: {i}\n' +
|
780 |
+
f'# Last generation: {len(data)}\n' +
|
781 |
+
f'# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) + '\n' +
|
782 |
+
f'# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n')
|
783 |
+
yaml.safe_dump(hyp, f, sort_keys=False)
|
784 |
+
|
785 |
+
if bucket:
|
786 |
+
os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}') # upload
|
787 |
+
|
788 |
+
|
789 |
+
def apply_classifier(x, model, img, im0):
|
790 |
+
# Apply a second stage classifier to yolo outputs
|
791 |
+
im0 = [im0] if isinstance(im0, np.ndarray) else im0
|
792 |
+
for i, d in enumerate(x): # per image
|
793 |
+
if d is not None and len(d):
|
794 |
+
d = d.clone()
|
795 |
+
|
796 |
+
# Reshape and pad cutouts
|
797 |
+
b = xyxy2xywh(d[:, :4]) # boxes
|
798 |
+
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
|
799 |
+
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
|
800 |
+
d[:, :4] = xywh2xyxy(b).long()
|
801 |
+
|
802 |
+
# Rescale boxes from img_size to im0 size
|
803 |
+
scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
|
804 |
+
|
805 |
+
# Classes
|
806 |
+
pred_cls1 = d[:, 5].long()
|
807 |
+
ims = []
|
808 |
+
for j, a in enumerate(d): # per item
|
809 |
+
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
|
810 |
+
im = cv2.resize(cutout, (224, 224)) # BGR
|
811 |
+
# cv2.imwrite('example%i.jpg' % j, cutout)
|
812 |
+
|
813 |
+
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
814 |
+
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
|
815 |
+
im /= 255.0 # 0 - 255 to 0.0 - 1.0
|
816 |
+
ims.append(im)
|
817 |
+
|
818 |
+
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
|
819 |
+
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
|
820 |
+
|
821 |
+
return x
|
822 |
+
|
823 |
+
|
824 |
+
def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BGR=False, save=True):
|
825 |
+
# Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
|
826 |
+
xyxy = torch.tensor(xyxy).view(-1, 4)
|
827 |
+
b = xyxy2xywh(xyxy) # boxes
|
828 |
+
if square:
|
829 |
+
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
|
830 |
+
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
|
831 |
+
xyxy = xywh2xyxy(b).long()
|
832 |
+
clip_coords(xyxy, im.shape)
|
833 |
+
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
|
834 |
+
if save:
|
835 |
+
cv2.imwrite(str(increment_path(file, mkdir=True).with_suffix('.jpg')), crop)
|
836 |
+
return crop
|
837 |
+
|
838 |
+
|
839 |
+
def increment_path(path, exist_ok=False, sep='', mkdir=False):
|
840 |
+
# Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
|
841 |
+
path = Path(path) # os-agnostic
|
842 |
+
if path.exists() and not exist_ok:
|
843 |
+
suffix = path.suffix
|
844 |
+
path = path.with_suffix('')
|
845 |
+
dirs = glob.glob(f"{path}{sep}*") # similar paths
|
846 |
+
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
|
847 |
+
i = [int(m.groups()[0]) for m in matches if m] # indices
|
848 |
+
n = max(i) + 1 if i else 2 # increment number
|
849 |
+
path = Path(f"{path}{sep}{n}{suffix}") # update path
|
850 |
+
dir = path if path.suffix == '' else path.parent # directory
|
851 |
+
if not dir.exists() and mkdir:
|
852 |
+
dir.mkdir(parents=True, exist_ok=True) # make directory
|
853 |
+
return path
|
utils/labels.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, os.path as osp
|
2 |
+
import argparse
|
3 |
+
import numpy as np
|
4 |
+
import yaml
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
|
8 |
+
def write_kp_labels(data):
|
9 |
+
assert not osp.isdir(osp.join(data['path'], data['labels'])), \
|
10 |
+
'Labels already generated. Remove or choose new name for labels.'
|
11 |
+
|
12 |
+
is_coco = 'coco' in data['path']
|
13 |
+
if is_coco:
|
14 |
+
from pycocotools.coco import COCO
|
15 |
+
else:
|
16 |
+
from crowdposetools.coco import COCO
|
17 |
+
|
18 |
+
splits = [osp.splitext(osp.split(data[s])[-1])[0] for s in ['train', 'val', 'test'] if s in data]
|
19 |
+
annotations = [osp.join(data['path'], data['{}_annotations'.format(s)]) for s in ['train', 'val', 'test'] if s in data]
|
20 |
+
test_split = [0 if s in ['train', 'val'] else 1 for s in ['train', 'val', 'test'] if s in data]
|
21 |
+
img_txt_dir = osp.join(data['path'], data['labels'], 'img_txt')
|
22 |
+
os.makedirs(img_txt_dir, exist_ok=True)
|
23 |
+
|
24 |
+
for split, annot, is_test in zip(splits, annotations, test_split):
|
25 |
+
img_txt_path = osp.join(img_txt_dir, '{}.txt'.format(split))
|
26 |
+
labels_path = osp.join(data['path'], '{}/{}'.format(data['labels'], split if is_coco else ''))
|
27 |
+
if not is_test:
|
28 |
+
os.makedirs(labels_path, exist_ok=True)
|
29 |
+
coco = COCO(annot)
|
30 |
+
if not is_test:
|
31 |
+
pbar = tqdm(coco.anns.keys(), total=len(coco.anns.keys()))
|
32 |
+
pbar.desc = 'Writing {} labels to {}'.format(split, labels_path)
|
33 |
+
for id in pbar:
|
34 |
+
a = coco.anns[id]
|
35 |
+
|
36 |
+
if a['image_id'] not in coco.imgs:
|
37 |
+
continue
|
38 |
+
|
39 |
+
if 'train' in split:
|
40 |
+
if is_coco and a['iscrowd']:
|
41 |
+
continue
|
42 |
+
|
43 |
+
img_info = coco.imgs[a['image_id']]
|
44 |
+
img_h, img_w = img_info['height'], img_info['width']
|
45 |
+
x, y, w, h = a['bbox']
|
46 |
+
xc, yc = x + w / 2, y + h / 2
|
47 |
+
xc /= img_w
|
48 |
+
yc /= img_h
|
49 |
+
w /= img_w
|
50 |
+
h /= img_h
|
51 |
+
|
52 |
+
keypoints = np.array(a['keypoints']).reshape([-1, 3])
|
53 |
+
|
54 |
+
# some of crowdpose keypoints are just outside image so clip to image extents
|
55 |
+
if not is_coco:
|
56 |
+
keypoints[:, 0] = np.clip(keypoints[:, 0], 0, img_w)
|
57 |
+
keypoints[:, 1] = np.clip(keypoints[:, 1], 0, img_h)
|
58 |
+
|
59 |
+
with open(osp.join(labels_path, '{}.txt'.format(osp.splitext(img_info['file_name'])[0])), 'a') as f:
|
60 |
+
# write person object
|
61 |
+
s = '{} {:.6f} {:.6f} {:.6f} {:.6f}'.format(0, xc, yc, w, h)
|
62 |
+
if data['pose_obj']:
|
63 |
+
for i, (x, y, v) in enumerate(keypoints):
|
64 |
+
s += ' {:.6f} {:.6f} {:.6f}'.format(x / img_w, y / img_h, v)
|
65 |
+
s += '\n'
|
66 |
+
f.write(s)
|
67 |
+
|
68 |
+
# write keypoint objects
|
69 |
+
for i, (x, y, v) in enumerate(keypoints):
|
70 |
+
if v:
|
71 |
+
if isinstance(data['kp_bbox'], list):
|
72 |
+
kp_bbox = data['kp_bbox'][i]
|
73 |
+
else:
|
74 |
+
kp_bbox = data['kp_bbox']
|
75 |
+
|
76 |
+
s = '{} {:.6f} {:.6f} {:.6f} {:.6f}'.format(
|
77 |
+
i + 1, x / img_w, y / img_h,
|
78 |
+
kp_bbox * max(img_h, img_w) / img_w,
|
79 |
+
kp_bbox * max(img_h, img_w) / img_h)
|
80 |
+
|
81 |
+
if data['pose_obj']:
|
82 |
+
for _ in range(keypoints.shape[0]):
|
83 |
+
s += ' {:.6f} {:.6f} {:.6f}'.format(0, 0, 0)
|
84 |
+
s += '\n'
|
85 |
+
f.write(s)
|
86 |
+
pbar.close()
|
87 |
+
|
88 |
+
with open(img_txt_path, 'w') as f:
|
89 |
+
for img_info in coco.imgs.values():
|
90 |
+
f.write(osp.join(data['path'], 'images',
|
91 |
+
'{}'.format(split if is_coco else ''),
|
92 |
+
img_info['file_name']) + '\n')
|
93 |
+
|
94 |
+
|
95 |
+
if __name__ == '__main__':
|
96 |
+
parser = argparse.ArgumentParser()
|
97 |
+
parser.add_argument('--data', default='data/coco-kp.yaml')
|
98 |
+
args = parser.parse_args()
|
99 |
+
|
100 |
+
assert osp.isfile(args.data), 'Data config file not found at {}'.format(args.data)
|
101 |
+
|
102 |
+
with open(args.data, 'rb') as f:
|
103 |
+
data = yaml.safe_load(f)
|
104 |
+
write_kp_labels(data)
|
utils/loggers/__init__.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Logging utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
from threading import Thread
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch.utils.tensorboard import SummaryWriter
|
11 |
+
|
12 |
+
from utils.general import colorstr, emojis
|
13 |
+
from utils.loggers.wandb.wandb_utils import WandbLogger
|
14 |
+
from utils.plots import plot_images, plot_results
|
15 |
+
from utils.torch_utils import de_parallel
|
16 |
+
|
17 |
+
LOGGERS = ('csv', 'tb', 'wandb') # text-file, TensorBoard, Weights & Biases
|
18 |
+
|
19 |
+
try:
|
20 |
+
import wandb
|
21 |
+
|
22 |
+
assert hasattr(wandb, '__version__') # verify package import not local dir
|
23 |
+
except (ImportError, AssertionError):
|
24 |
+
wandb = None
|
25 |
+
|
26 |
+
|
27 |
+
class Loggers():
|
28 |
+
# YOLOv5 Loggers class
|
29 |
+
def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
|
30 |
+
self.save_dir = save_dir
|
31 |
+
self.weights = weights
|
32 |
+
self.opt = opt
|
33 |
+
self.hyp = hyp
|
34 |
+
self.logger = logger # for printing results to console
|
35 |
+
self.include = include
|
36 |
+
self.keys = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', 'train/kp_loss', # train loss
|
37 |
+
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', # metrics
|
38 |
+
'val/box_loss', 'val/obj_loss', 'val/cls_loss', 'val/kp_loss', # val loss
|
39 |
+
'x/lr0', 'x/lr1', 'x/lr2'] # params
|
40 |
+
for k in LOGGERS:
|
41 |
+
setattr(self, k, None) # init empty logger dictionary
|
42 |
+
self.csv = True # always log to csv
|
43 |
+
|
44 |
+
# Message
|
45 |
+
if not wandb:
|
46 |
+
prefix = colorstr('Weights & Biases: ')
|
47 |
+
s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)"
|
48 |
+
print(emojis(s))
|
49 |
+
|
50 |
+
# TensorBoard
|
51 |
+
s = self.save_dir
|
52 |
+
if 'tb' in self.include and not self.opt.evolve:
|
53 |
+
prefix = colorstr('TensorBoard: ')
|
54 |
+
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
|
55 |
+
self.tb = SummaryWriter(str(s))
|
56 |
+
|
57 |
+
# W&B
|
58 |
+
if wandb and 'wandb' in self.include:
|
59 |
+
wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://')
|
60 |
+
run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None
|
61 |
+
self.opt.hyp = self.hyp # add hyperparameters
|
62 |
+
self.wandb = WandbLogger(self.opt, run_id)
|
63 |
+
else:
|
64 |
+
self.wandb = None
|
65 |
+
|
66 |
+
def on_pretrain_routine_end(self):
|
67 |
+
# Callback runs on pre-train routine end
|
68 |
+
paths = self.save_dir.glob('*labels*.jpg') # training labels
|
69 |
+
if self.wandb:
|
70 |
+
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
|
71 |
+
|
72 |
+
def on_train_batch_end(self, ni, model, imgs, targets, paths, plots, sync_bn):
|
73 |
+
# Callback runs on train batch end
|
74 |
+
if plots:
|
75 |
+
if ni == 0:
|
76 |
+
if not sync_bn: # tb.add_graph() --sync known issue https://github.com/ultralytics/yolov5/issues/3754
|
77 |
+
with warnings.catch_warnings():
|
78 |
+
warnings.simplefilter('ignore') # suppress jit trace warning
|
79 |
+
self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
|
80 |
+
if ni < 3:
|
81 |
+
f = self.save_dir / f'train_batch{ni}.jpg' # filename
|
82 |
+
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
|
83 |
+
if self.wandb and ni == 10:
|
84 |
+
files = sorted(self.save_dir.glob('train*.jpg'))
|
85 |
+
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
|
86 |
+
|
87 |
+
def on_train_epoch_end(self, epoch):
|
88 |
+
# Callback runs on train epoch end
|
89 |
+
if self.wandb:
|
90 |
+
self.wandb.current_epoch = epoch + 1
|
91 |
+
|
92 |
+
def on_val_image_end(self, pred, predn, path, names, im):
|
93 |
+
# Callback runs on val image end
|
94 |
+
if self.wandb:
|
95 |
+
self.wandb.val_one_image(pred, predn, path, names, im)
|
96 |
+
|
97 |
+
def on_val_end(self):
|
98 |
+
# Callback runs on val end
|
99 |
+
if self.wandb:
|
100 |
+
files = sorted(self.save_dir.glob('val*.jpg'))
|
101 |
+
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
|
102 |
+
|
103 |
+
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
|
104 |
+
# Callback runs at the end of each fit (train+val) epoch
|
105 |
+
x = {k: v for k, v in zip(self.keys, vals)} # dict
|
106 |
+
if self.csv:
|
107 |
+
file = self.save_dir / 'results.csv'
|
108 |
+
n = len(x) + 1 # number of cols
|
109 |
+
s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header
|
110 |
+
with open(file, 'a') as f:
|
111 |
+
f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
|
112 |
+
|
113 |
+
if self.tb:
|
114 |
+
for k, v in x.items():
|
115 |
+
self.tb.add_scalar(k, v, epoch)
|
116 |
+
|
117 |
+
if self.wandb:
|
118 |
+
self.wandb.log(x)
|
119 |
+
self.wandb.end_epoch(best_result=best_fitness == fi)
|
120 |
+
|
121 |
+
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
|
122 |
+
# Callback runs on model save event
|
123 |
+
if self.wandb:
|
124 |
+
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
|
125 |
+
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
|
126 |
+
|
127 |
+
def on_train_end(self, last, best, plots, epoch):
|
128 |
+
# Callback runs on training end
|
129 |
+
if plots:
|
130 |
+
plot_results(file=self.save_dir / 'results.csv') # save results.png
|
131 |
+
files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
|
132 |
+
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
|
133 |
+
|
134 |
+
if self.tb:
|
135 |
+
import cv2
|
136 |
+
for f in files:
|
137 |
+
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
|
138 |
+
|
139 |
+
if self.wandb:
|
140 |
+
self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
|
141 |
+
# Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
|
142 |
+
if not self.opt.evolve:
|
143 |
+
wandb.log_artifact(str(best if best.exists() else last), type='model',
|
144 |
+
name='run_' + self.wandb.wandb_run.id + '_model',
|
145 |
+
aliases=['latest', 'best', 'stripped'])
|
146 |
+
self.wandb.finish_run()
|
147 |
+
else:
|
148 |
+
self.wandb.finish_run()
|
149 |
+
self.wandb = WandbLogger(self.opt)
|
utils/loggers/wandb/README.md
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
📚 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 🚀.
|
2 |
+
* [About Weights & Biases](#about-weights-&-biases)
|
3 |
+
* [First-Time Setup](#first-time-setup)
|
4 |
+
* [Viewing runs](#viewing-runs)
|
5 |
+
* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
|
6 |
+
* [Reports: Share your work with the world!](#reports)
|
7 |
+
|
8 |
+
## About Weights & Biases
|
9 |
+
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models — architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
|
10 |
+
|
11 |
+
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
|
12 |
+
|
13 |
+
* [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
|
14 |
+
* [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4), visualized automatically
|
15 |
+
* [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
|
16 |
+
* [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
|
17 |
+
* [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
|
18 |
+
* [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
|
19 |
+
|
20 |
+
## First-Time Setup
|
21 |
+
<details open>
|
22 |
+
<summary> Toggle Details </summary>
|
23 |
+
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
|
24 |
+
|
25 |
+
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
|
26 |
+
|
27 |
+
```shell
|
28 |
+
$ python train.py --project ... --name ...
|
29 |
+
```
|
30 |
+
|
31 |
+
<img alt="" width="800" src="https://user-images.githubusercontent.com/26833433/98183367-4acbc600-1f08-11eb-9a23-7266a4192355.jpg">
|
32 |
+
</details>
|
33 |
+
|
34 |
+
## Viewing Runs
|
35 |
+
<details open>
|
36 |
+
<summary> Toggle Details </summary>
|
37 |
+
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
|
38 |
+
|
39 |
+
* Training & Validation losses
|
40 |
+
* Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
|
41 |
+
* Learning Rate over time
|
42 |
+
* A bounding box debugging panel, showing the training progress over time
|
43 |
+
* GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
|
44 |
+
* System: Disk I/0, CPU utilization, RAM memory usage
|
45 |
+
* Your trained model as W&B Artifact
|
46 |
+
* Environment: OS and Python types, Git repository and state, **training command**
|
47 |
+
|
48 |
+
<img alt="" width="800" src="https://user-images.githubusercontent.com/26833433/98184457-bd3da580-1f0a-11eb-8461-95d908a71893.jpg">
|
49 |
+
</details>
|
50 |
+
|
51 |
+
## Advanced Usage
|
52 |
+
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
|
53 |
+
<details open>
|
54 |
+
<h3>1. Visualize and Version Datasets</h3>
|
55 |
+
Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
|
56 |
+
<details>
|
57 |
+
<summary> <b>Usage</b> </summary>
|
58 |
+
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
|
59 |
+
|
60 |
+

|
61 |
+
</details>
|
62 |
+
|
63 |
+
<h3> 2: Train and Log Evaluation simultaneousy </h3>
|
64 |
+
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
|
65 |
+
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
|
66 |
+
so no images will be uploaded from your system more than once.
|
67 |
+
<details>
|
68 |
+
<summary> <b>Usage</b> </summary>
|
69 |
+
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --data .. --upload_data </code>
|
70 |
+
|
71 |
+

|
72 |
+
</details>
|
73 |
+
|
74 |
+
<h3> 3: Train using dataset artifact </h3>
|
75 |
+
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
|
76 |
+
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
|
77 |
+
<details>
|
78 |
+
<summary> <b>Usage</b> </summary>
|
79 |
+
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --data {data}_wandb.yaml </code>
|
80 |
+
|
81 |
+

|
82 |
+
</details>
|
83 |
+
|
84 |
+
<h3> 4: Save model checkpoints as artifacts </h3>
|
85 |
+
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
|
86 |
+
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
|
87 |
+
|
88 |
+
<details>
|
89 |
+
<summary> <b>Usage</b> </summary>
|
90 |
+
<b>Code</b> <code> $ python train.py --save_period 1 </code>
|
91 |
+
|
92 |
+

|
93 |
+
</details>
|
94 |
+
|
95 |
+
</details>
|
96 |
+
|
97 |
+
<h3> 5: Resume runs from checkpoint artifacts. </h3>
|
98 |
+
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with <code>wandb-artifact://</code> prefix followed by the run path, i.e, <code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
|
99 |
+
|
100 |
+
<details>
|
101 |
+
<summary> <b>Usage</b> </summary>
|
102 |
+
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
|
103 |
+
|
104 |
+

|
105 |
+
</details>
|
106 |
+
|
107 |
+
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
|
108 |
+
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
|
109 |
+
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or
|
110 |
+
train from <code>_wandb.yaml</code> file and set <code>--save_period</code>
|
111 |
+
|
112 |
+
<details>
|
113 |
+
<summary> <b>Usage</b> </summary>
|
114 |
+
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
|
115 |
+
|
116 |
+

|
117 |
+
</details>
|
118 |
+
|
119 |
+
</details>
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
<h3> Reports </h3>
|
124 |
+
W&B Reports can be created from your saved runs for sharing online. Once a report is created you will receive a link you can use to publically share your results. Here is an example report created from the COCO128 tutorial trainings of all four YOLOv5 models ([link](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY)).
|
125 |
+
|
126 |
+
<img alt="" width="800" src="https://user-images.githubusercontent.com/26833433/98185222-794ba000-1f0c-11eb-850f-3e9c45ad6949.jpg">
|
127 |
+
|
128 |
+
## Environments
|
129 |
+
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
|
130 |
+
|
131 |
+
* **Google Colab and Kaggle** notebooks with free GPU: [](https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb) [](https://www.kaggle.com/ultralytics/yolov5)
|
132 |
+
* **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
|
133 |
+
* **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
|
134 |
+
* **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) [](https://hub.docker.com/r/ultralytics/yolov5)
|
135 |
+
|
136 |
+
## Status
|
137 |
+

|
138 |
+
|
139 |
+
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
|
140 |
+
|
utils/loggers/wandb/__init__.py
ADDED
File without changes
|
utils/loggers/wandb/log_dataset.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
from wandb_utils import WandbLogger
|
4 |
+
|
5 |
+
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
|
6 |
+
|
7 |
+
|
8 |
+
def create_dataset_artifact(opt):
|
9 |
+
logger = WandbLogger(opt, None, job_type='Dataset Creation') # TODO: return value unused
|
10 |
+
|
11 |
+
|
12 |
+
if __name__ == '__main__':
|
13 |
+
parser = argparse.ArgumentParser()
|
14 |
+
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
|
15 |
+
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
|
16 |
+
parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
|
17 |
+
parser.add_argument('--entity', default=None, help='W&B entity')
|
18 |
+
parser.add_argument('--name', type=str, default='log dataset', help='name of W&B run')
|
19 |
+
|
20 |
+
opt = parser.parse_args()
|
21 |
+
opt.resume = False # Explicitly disallow resume check for dataset upload job
|
22 |
+
|
23 |
+
create_dataset_artifact(opt)
|
utils/loggers/wandb/sweep.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import wandb
|
5 |
+
|
6 |
+
FILE = Path(__file__).absolute()
|
7 |
+
sys.path.append(FILE.parents[3].as_posix()) # add utils/ to path
|
8 |
+
|
9 |
+
from train import train, parse_opt
|
10 |
+
from utils.general import increment_path
|
11 |
+
from utils.torch_utils import select_device
|
12 |
+
|
13 |
+
|
14 |
+
def sweep():
|
15 |
+
wandb.init()
|
16 |
+
# Get hyp dict from sweep agent
|
17 |
+
hyp_dict = vars(wandb.config).get("_items")
|
18 |
+
|
19 |
+
# Workaround: get necessary opt args
|
20 |
+
opt = parse_opt(known=True)
|
21 |
+
opt.batch_size = hyp_dict.get("batch_size")
|
22 |
+
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
|
23 |
+
opt.epochs = hyp_dict.get("epochs")
|
24 |
+
opt.nosave = True
|
25 |
+
opt.data = hyp_dict.get("data")
|
26 |
+
device = select_device(opt.device, batch_size=opt.batch_size)
|
27 |
+
|
28 |
+
# train
|
29 |
+
train(hyp_dict, opt, device)
|
30 |
+
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
sweep()
|
utils/loggers/wandb/sweep.yaml
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Hyperparameters for training
|
2 |
+
# To set range-
|
3 |
+
# Provide min and max values as:
|
4 |
+
# parameter:
|
5 |
+
#
|
6 |
+
# min: scalar
|
7 |
+
# max: scalar
|
8 |
+
# OR
|
9 |
+
#
|
10 |
+
# Set a specific list of search space-
|
11 |
+
# parameter:
|
12 |
+
# values: [scalar1, scalar2, scalar3...]
|
13 |
+
#
|
14 |
+
# You can use grid, bayesian and hyperopt search strategy
|
15 |
+
# For more info on configuring sweeps visit - https://docs.wandb.ai/guides/sweeps/configuration
|
16 |
+
|
17 |
+
program: utils/loggers/wandb/sweep.py
|
18 |
+
method: random
|
19 |
+
metric:
|
20 |
+
name: metrics/mAP_0.5
|
21 |
+
goal: maximize
|
22 |
+
|
23 |
+
parameters:
|
24 |
+
# hyperparameters: set either min, max range or values list
|
25 |
+
data:
|
26 |
+
value: "data/coco128.yaml"
|
27 |
+
batch_size:
|
28 |
+
values: [64]
|
29 |
+
epochs:
|
30 |
+
values: [10]
|
31 |
+
|
32 |
+
lr0:
|
33 |
+
distribution: uniform
|
34 |
+
min: 1e-5
|
35 |
+
max: 1e-1
|
36 |
+
lrf:
|
37 |
+
distribution: uniform
|
38 |
+
min: 0.01
|
39 |
+
max: 1.0
|
40 |
+
momentum:
|
41 |
+
distribution: uniform
|
42 |
+
min: 0.6
|
43 |
+
max: 0.98
|
44 |
+
weight_decay:
|
45 |
+
distribution: uniform
|
46 |
+
min: 0.0
|
47 |
+
max: 0.001
|
48 |
+
warmup_epochs:
|
49 |
+
distribution: uniform
|
50 |
+
min: 0.0
|
51 |
+
max: 5.0
|
52 |
+
warmup_momentum:
|
53 |
+
distribution: uniform
|
54 |
+
min: 0.0
|
55 |
+
max: 0.95
|
56 |
+
warmup_bias_lr:
|
57 |
+
distribution: uniform
|
58 |
+
min: 0.0
|
59 |
+
max: 0.2
|
60 |
+
box:
|
61 |
+
distribution: uniform
|
62 |
+
min: 0.02
|
63 |
+
max: 0.2
|
64 |
+
cls:
|
65 |
+
distribution: uniform
|
66 |
+
min: 0.2
|
67 |
+
max: 4.0
|
68 |
+
cls_pw:
|
69 |
+
distribution: uniform
|
70 |
+
min: 0.5
|
71 |
+
max: 2.0
|
72 |
+
obj:
|
73 |
+
distribution: uniform
|
74 |
+
min: 0.2
|
75 |
+
max: 4.0
|
76 |
+
obj_pw:
|
77 |
+
distribution: uniform
|
78 |
+
min: 0.5
|
79 |
+
max: 2.0
|
80 |
+
iou_t:
|
81 |
+
distribution: uniform
|
82 |
+
min: 0.1
|
83 |
+
max: 0.7
|
84 |
+
anchor_t:
|
85 |
+
distribution: uniform
|
86 |
+
min: 2.0
|
87 |
+
max: 8.0
|
88 |
+
fl_gamma:
|
89 |
+
distribution: uniform
|
90 |
+
min: 0.0
|
91 |
+
max: 0.1
|
92 |
+
hsv_h:
|
93 |
+
distribution: uniform
|
94 |
+
min: 0.0
|
95 |
+
max: 0.1
|
96 |
+
hsv_s:
|
97 |
+
distribution: uniform
|
98 |
+
min: 0.0
|
99 |
+
max: 0.9
|
100 |
+
hsv_v:
|
101 |
+
distribution: uniform
|
102 |
+
min: 0.0
|
103 |
+
max: 0.9
|
104 |
+
degrees:
|
105 |
+
distribution: uniform
|
106 |
+
min: 0.0
|
107 |
+
max: 45.0
|
108 |
+
translate:
|
109 |
+
distribution: uniform
|
110 |
+
min: 0.0
|
111 |
+
max: 0.9
|
112 |
+
scale:
|
113 |
+
distribution: uniform
|
114 |
+
min: 0.0
|
115 |
+
max: 0.9
|
116 |
+
shear:
|
117 |
+
distribution: uniform
|
118 |
+
min: 0.0
|
119 |
+
max: 10.0
|
120 |
+
perspective:
|
121 |
+
distribution: uniform
|
122 |
+
min: 0.0
|
123 |
+
max: 0.001
|
124 |
+
flipud:
|
125 |
+
distribution: uniform
|
126 |
+
min: 0.0
|
127 |
+
max: 1.0
|
128 |
+
fliplr:
|
129 |
+
distribution: uniform
|
130 |
+
min: 0.0
|
131 |
+
max: 1.0
|
132 |
+
mosaic:
|
133 |
+
distribution: uniform
|
134 |
+
min: 0.0
|
135 |
+
max: 1.0
|
136 |
+
mixup:
|
137 |
+
distribution: uniform
|
138 |
+
min: 0.0
|
139 |
+
max: 1.0
|
140 |
+
copy_paste:
|
141 |
+
distribution: uniform
|
142 |
+
min: 0.0
|
143 |
+
max: 1.0
|
utils/loggers/wandb/wandb_utils.py
ADDED
@@ -0,0 +1,519 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utilities and tools for tracking runs with Weights & Biases."""
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
from contextlib import contextmanager
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
import yaml
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
FILE = Path(__file__).absolute()
|
13 |
+
sys.path.append(FILE.parents[3].as_posix()) # add yolov5/ to path
|
14 |
+
|
15 |
+
from utils.datasets import LoadImagesAndLabels
|
16 |
+
from utils.datasets import img2label_paths
|
17 |
+
from utils.general import check_dataset, check_file
|
18 |
+
|
19 |
+
try:
|
20 |
+
import wandb
|
21 |
+
|
22 |
+
assert hasattr(wandb, '__version__') # verify package import not local dir
|
23 |
+
except (ImportError, AssertionError):
|
24 |
+
wandb = None
|
25 |
+
|
26 |
+
RANK = int(os.getenv('RANK', -1))
|
27 |
+
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
|
28 |
+
|
29 |
+
|
30 |
+
def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
|
31 |
+
return from_string[len(prefix):]
|
32 |
+
|
33 |
+
|
34 |
+
def check_wandb_config_file(data_config_file):
|
35 |
+
wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
|
36 |
+
if Path(wandb_config).is_file():
|
37 |
+
return wandb_config
|
38 |
+
return data_config_file
|
39 |
+
|
40 |
+
|
41 |
+
def check_wandb_dataset(data_file):
|
42 |
+
is_wandb_artifact = False
|
43 |
+
if check_file(data_file) and data_file.endswith('.yaml'):
|
44 |
+
with open(data_file, errors='ignore') as f:
|
45 |
+
data_dict = yaml.safe_load(f)
|
46 |
+
is_wandb_artifact = (data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX) or
|
47 |
+
data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX))
|
48 |
+
if is_wandb_artifact:
|
49 |
+
return data_dict
|
50 |
+
else:
|
51 |
+
return check_dataset(data_file)
|
52 |
+
|
53 |
+
|
54 |
+
def get_run_info(run_path):
|
55 |
+
run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
|
56 |
+
run_id = run_path.stem
|
57 |
+
project = run_path.parent.stem
|
58 |
+
entity = run_path.parent.parent.stem
|
59 |
+
model_artifact_name = 'run_' + run_id + '_model'
|
60 |
+
return entity, project, run_id, model_artifact_name
|
61 |
+
|
62 |
+
|
63 |
+
def check_wandb_resume(opt):
|
64 |
+
process_wandb_config_ddp_mode(opt) if RANK not in [-1, 0] else None
|
65 |
+
if isinstance(opt.resume, str):
|
66 |
+
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
67 |
+
if RANK not in [-1, 0]: # For resuming DDP runs
|
68 |
+
entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
|
69 |
+
api = wandb.Api()
|
70 |
+
artifact = api.artifact(entity + '/' + project + '/' + model_artifact_name + ':latest')
|
71 |
+
modeldir = artifact.download()
|
72 |
+
opt.weights = str(Path(modeldir) / "last.pt")
|
73 |
+
return True
|
74 |
+
return None
|
75 |
+
|
76 |
+
|
77 |
+
def process_wandb_config_ddp_mode(opt):
|
78 |
+
with open(check_file(opt.data), errors='ignore') as f:
|
79 |
+
data_dict = yaml.safe_load(f) # data dict
|
80 |
+
train_dir, val_dir = None, None
|
81 |
+
if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
|
82 |
+
api = wandb.Api()
|
83 |
+
train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
|
84 |
+
train_dir = train_artifact.download()
|
85 |
+
train_path = Path(train_dir) / 'data/images/'
|
86 |
+
data_dict['train'] = str(train_path)
|
87 |
+
|
88 |
+
if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
|
89 |
+
api = wandb.Api()
|
90 |
+
val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
|
91 |
+
val_dir = val_artifact.download()
|
92 |
+
val_path = Path(val_dir) / 'data/images/'
|
93 |
+
data_dict['val'] = str(val_path)
|
94 |
+
if train_dir or val_dir:
|
95 |
+
ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
|
96 |
+
with open(ddp_data_path, 'w') as f:
|
97 |
+
yaml.safe_dump(data_dict, f)
|
98 |
+
opt.data = ddp_data_path
|
99 |
+
|
100 |
+
|
101 |
+
class WandbLogger():
|
102 |
+
"""Log training runs, datasets, models, and predictions to Weights & Biases.
|
103 |
+
|
104 |
+
This logger sends information to W&B at wandb.ai. By default, this information
|
105 |
+
includes hyperparameters, system configuration and metrics, model metrics,
|
106 |
+
and basic data metrics and analyses.
|
107 |
+
|
108 |
+
By providing additional command line arguments to train.py, datasets,
|
109 |
+
models and predictions can also be logged.
|
110 |
+
|
111 |
+
For more on how this logger is used, see the Weights & Biases documentation:
|
112 |
+
https://docs.wandb.com/guides/integrations/yolov5
|
113 |
+
"""
|
114 |
+
|
115 |
+
def __init__(self, opt, run_id=None, job_type='Training'):
|
116 |
+
"""
|
117 |
+
- Initialize WandbLogger instance
|
118 |
+
- Upload dataset if opt.upload_dataset is True
|
119 |
+
- Setup trainig processes if job_type is 'Training'
|
120 |
+
|
121 |
+
arguments:
|
122 |
+
opt (namespace) -- Commandline arguments for this run
|
123 |
+
run_id (str) -- Run ID of W&B run to be resumed
|
124 |
+
job_type (str) -- To set the job_type for this run
|
125 |
+
|
126 |
+
"""
|
127 |
+
# Pre-training routine --
|
128 |
+
self.job_type = job_type
|
129 |
+
self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
|
130 |
+
self.val_artifact, self.train_artifact = None, None
|
131 |
+
self.train_artifact_path, self.val_artifact_path = None, None
|
132 |
+
self.result_artifact = None
|
133 |
+
self.val_table, self.result_table = None, None
|
134 |
+
self.bbox_media_panel_images = []
|
135 |
+
self.val_table_path_map = None
|
136 |
+
self.max_imgs_to_log = 16
|
137 |
+
self.wandb_artifact_data_dict = None
|
138 |
+
self.data_dict = None
|
139 |
+
# It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call
|
140 |
+
if isinstance(opt.resume, str): # checks resume from artifact
|
141 |
+
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
142 |
+
entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
|
143 |
+
model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
|
144 |
+
assert wandb, 'install wandb to resume wandb runs'
|
145 |
+
# Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
|
146 |
+
self.wandb_run = wandb.init(id=run_id,
|
147 |
+
project=project,
|
148 |
+
entity=entity,
|
149 |
+
resume='allow',
|
150 |
+
allow_val_change=True)
|
151 |
+
opt.resume = model_artifact_name
|
152 |
+
elif self.wandb:
|
153 |
+
self.wandb_run = wandb.init(config=opt,
|
154 |
+
resume="allow",
|
155 |
+
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
|
156 |
+
entity=opt.entity,
|
157 |
+
name=opt.name if opt.name != 'exp' else None,
|
158 |
+
job_type=job_type,
|
159 |
+
id=run_id,
|
160 |
+
allow_val_change=True) if not wandb.run else wandb.run
|
161 |
+
if self.wandb_run:
|
162 |
+
if self.job_type == 'Training':
|
163 |
+
if opt.upload_dataset:
|
164 |
+
if not opt.resume:
|
165 |
+
self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt)
|
166 |
+
|
167 |
+
if opt.resume:
|
168 |
+
# resume from artifact
|
169 |
+
if isinstance(opt.resume, str) and opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
170 |
+
self.data_dict = dict(self.wandb_run.config.data_dict)
|
171 |
+
else: # local resume
|
172 |
+
self.data_dict = check_wandb_dataset(opt.data)
|
173 |
+
else:
|
174 |
+
self.data_dict = check_wandb_dataset(opt.data)
|
175 |
+
self.wandb_artifact_data_dict = self.wandb_artifact_data_dict or self.data_dict
|
176 |
+
|
177 |
+
# write data_dict to config. useful for resuming from artifacts. Do this only when not resuming.
|
178 |
+
self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict},
|
179 |
+
allow_val_change=True)
|
180 |
+
self.setup_training(opt)
|
181 |
+
|
182 |
+
if self.job_type == 'Dataset Creation':
|
183 |
+
self.data_dict = self.check_and_upload_dataset(opt)
|
184 |
+
|
185 |
+
def check_and_upload_dataset(self, opt):
|
186 |
+
"""
|
187 |
+
Check if the dataset format is compatible and upload it as W&B artifact
|
188 |
+
|
189 |
+
arguments:
|
190 |
+
opt (namespace)-- Commandline arguments for current run
|
191 |
+
|
192 |
+
returns:
|
193 |
+
Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
|
194 |
+
"""
|
195 |
+
assert wandb, 'Install wandb to upload dataset'
|
196 |
+
config_path = self.log_dataset_artifact(opt.data,
|
197 |
+
opt.single_cls,
|
198 |
+
'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
|
199 |
+
print("Created dataset config file ", config_path)
|
200 |
+
with open(config_path, errors='ignore') as f:
|
201 |
+
wandb_data_dict = yaml.safe_load(f)
|
202 |
+
return wandb_data_dict
|
203 |
+
|
204 |
+
def setup_training(self, opt):
|
205 |
+
"""
|
206 |
+
Setup the necessary processes for training YOLO models:
|
207 |
+
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
|
208 |
+
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
|
209 |
+
- Setup log_dict, initialize bbox_interval
|
210 |
+
|
211 |
+
arguments:
|
212 |
+
opt (namespace) -- commandline arguments for this run
|
213 |
+
|
214 |
+
"""
|
215 |
+
self.log_dict, self.current_epoch = {}, 0
|
216 |
+
self.bbox_interval = opt.bbox_interval
|
217 |
+
if isinstance(opt.resume, str):
|
218 |
+
modeldir, _ = self.download_model_artifact(opt)
|
219 |
+
if modeldir:
|
220 |
+
self.weights = Path(modeldir) / "last.pt"
|
221 |
+
config = self.wandb_run.config
|
222 |
+
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
|
223 |
+
self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs, \
|
224 |
+
config.hyp
|
225 |
+
data_dict = self.data_dict
|
226 |
+
if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download
|
227 |
+
self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
|
228 |
+
opt.artifact_alias)
|
229 |
+
self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'),
|
230 |
+
opt.artifact_alias)
|
231 |
+
|
232 |
+
if self.train_artifact_path is not None:
|
233 |
+
train_path = Path(self.train_artifact_path) / 'data/images/'
|
234 |
+
data_dict['train'] = str(train_path)
|
235 |
+
if self.val_artifact_path is not None:
|
236 |
+
val_path = Path(self.val_artifact_path) / 'data/images/'
|
237 |
+
data_dict['val'] = str(val_path)
|
238 |
+
|
239 |
+
if self.val_artifact is not None:
|
240 |
+
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
241 |
+
self.result_table = wandb.Table(["epoch", "id", "ground truth", "prediction", "avg_confidence"])
|
242 |
+
self.val_table = self.val_artifact.get("val")
|
243 |
+
if self.val_table_path_map is None:
|
244 |
+
self.map_val_table_path()
|
245 |
+
if opt.bbox_interval == -1:
|
246 |
+
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
|
247 |
+
train_from_artifact = self.train_artifact_path is not None and self.val_artifact_path is not None
|
248 |
+
# Update the the data_dict to point to local artifacts dir
|
249 |
+
if train_from_artifact:
|
250 |
+
self.data_dict = data_dict
|
251 |
+
|
252 |
+
def download_dataset_artifact(self, path, alias):
|
253 |
+
"""
|
254 |
+
download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
|
255 |
+
|
256 |
+
arguments:
|
257 |
+
path -- path of the dataset to be used for training
|
258 |
+
alias (str)-- alias of the artifact to be download/used for training
|
259 |
+
|
260 |
+
returns:
|
261 |
+
(str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
|
262 |
+
is found otherwise returns (None, None)
|
263 |
+
"""
|
264 |
+
if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
|
265 |
+
artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
|
266 |
+
dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
|
267 |
+
assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
|
268 |
+
datadir = dataset_artifact.download()
|
269 |
+
return datadir, dataset_artifact
|
270 |
+
return None, None
|
271 |
+
|
272 |
+
def download_model_artifact(self, opt):
|
273 |
+
"""
|
274 |
+
download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
|
275 |
+
|
276 |
+
arguments:
|
277 |
+
opt (namespace) -- Commandline arguments for this run
|
278 |
+
"""
|
279 |
+
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
280 |
+
model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
|
281 |
+
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
|
282 |
+
modeldir = model_artifact.download()
|
283 |
+
epochs_trained = model_artifact.metadata.get('epochs_trained')
|
284 |
+
total_epochs = model_artifact.metadata.get('total_epochs')
|
285 |
+
is_finished = total_epochs is None
|
286 |
+
assert not is_finished, 'training is finished, can only resume incomplete runs.'
|
287 |
+
return modeldir, model_artifact
|
288 |
+
return None, None
|
289 |
+
|
290 |
+
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
|
291 |
+
"""
|
292 |
+
Log the model checkpoint as W&B artifact
|
293 |
+
|
294 |
+
arguments:
|
295 |
+
path (Path) -- Path of directory containing the checkpoints
|
296 |
+
opt (namespace) -- Command line arguments for this run
|
297 |
+
epoch (int) -- Current epoch number
|
298 |
+
fitness_score (float) -- fitness score for current epoch
|
299 |
+
best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
|
300 |
+
"""
|
301 |
+
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
|
302 |
+
'original_url': str(path),
|
303 |
+
'epochs_trained': epoch + 1,
|
304 |
+
'save period': opt.save_period,
|
305 |
+
'project': opt.project,
|
306 |
+
'total_epochs': opt.epochs,
|
307 |
+
'fitness_score': fitness_score
|
308 |
+
})
|
309 |
+
model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
|
310 |
+
wandb.log_artifact(model_artifact,
|
311 |
+
aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
|
312 |
+
print("Saving model artifact on epoch ", epoch + 1)
|
313 |
+
|
314 |
+
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
|
315 |
+
"""
|
316 |
+
Log the dataset as W&B artifact and return the new data file with W&B links
|
317 |
+
|
318 |
+
arguments:
|
319 |
+
data_file (str) -- the .yaml file with information about the dataset like - path, classes etc.
|
320 |
+
single_class (boolean) -- train multi-class data as single-class
|
321 |
+
project (str) -- project name. Used to construct the artifact path
|
322 |
+
overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new
|
323 |
+
file with _wandb postfix. Eg -> data_wandb.yaml
|
324 |
+
|
325 |
+
returns:
|
326 |
+
the new .yaml file with artifact links. it can be used to start training directly from artifacts
|
327 |
+
"""
|
328 |
+
self.data_dict = check_dataset(data_file) # parse and check
|
329 |
+
data = dict(self.data_dict)
|
330 |
+
nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
|
331 |
+
names = {k: v for k, v in enumerate(names)} # to index dictionary
|
332 |
+
self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
|
333 |
+
data['train'], rect=True, batch_size=1), names, name='train') if data.get('train') else None
|
334 |
+
self.val_artifact = self.create_dataset_table(LoadImagesAndLabels(
|
335 |
+
data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None
|
336 |
+
if data.get('train'):
|
337 |
+
data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
|
338 |
+
if data.get('val'):
|
339 |
+
data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
|
340 |
+
path = Path(data_file).stem
|
341 |
+
path = (path if overwrite_config else path + '_wandb') + '.yaml' # updated data.yaml path
|
342 |
+
data.pop('download', None)
|
343 |
+
data.pop('path', None)
|
344 |
+
with open(path, 'w') as f:
|
345 |
+
yaml.safe_dump(data, f)
|
346 |
+
|
347 |
+
if self.job_type == 'Training': # builds correct artifact pipeline graph
|
348 |
+
self.wandb_run.use_artifact(self.val_artifact)
|
349 |
+
self.wandb_run.use_artifact(self.train_artifact)
|
350 |
+
self.val_artifact.wait()
|
351 |
+
self.val_table = self.val_artifact.get('val')
|
352 |
+
self.map_val_table_path()
|
353 |
+
else:
|
354 |
+
self.wandb_run.log_artifact(self.train_artifact)
|
355 |
+
self.wandb_run.log_artifact(self.val_artifact)
|
356 |
+
return path
|
357 |
+
|
358 |
+
def map_val_table_path(self):
|
359 |
+
"""
|
360 |
+
Map the validation dataset Table like name of file -> it's id in the W&B Table.
|
361 |
+
Useful for - referencing artifacts for evaluation.
|
362 |
+
"""
|
363 |
+
self.val_table_path_map = {}
|
364 |
+
print("Mapping dataset")
|
365 |
+
for i, data in enumerate(tqdm(self.val_table.data)):
|
366 |
+
self.val_table_path_map[data[3]] = data[0]
|
367 |
+
|
368 |
+
def create_dataset_table(self, dataset, class_to_id, name='dataset'):
|
369 |
+
"""
|
370 |
+
Create and return W&B artifact containing W&B Table of the dataset.
|
371 |
+
|
372 |
+
arguments:
|
373 |
+
dataset (LoadImagesAndLabels) -- instance of LoadImagesAndLabels class used to iterate over the data to build Table
|
374 |
+
class_to_id (dict(int, str)) -- hash map that maps class ids to labels
|
375 |
+
name (str) -- name of the artifact
|
376 |
+
|
377 |
+
returns:
|
378 |
+
dataset artifact to be logged or used
|
379 |
+
"""
|
380 |
+
# TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
|
381 |
+
artifact = wandb.Artifact(name=name, type="dataset")
|
382 |
+
img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
|
383 |
+
img_files = tqdm(dataset.img_files) if not img_files else img_files
|
384 |
+
for img_file in img_files:
|
385 |
+
if Path(img_file).is_dir():
|
386 |
+
artifact.add_dir(img_file, name='data/images')
|
387 |
+
labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
|
388 |
+
artifact.add_dir(labels_path, name='data/labels')
|
389 |
+
else:
|
390 |
+
artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
|
391 |
+
label_file = Path(img2label_paths([img_file])[0])
|
392 |
+
artifact.add_file(str(label_file),
|
393 |
+
name='data/labels/' + label_file.name) if label_file.exists() else None
|
394 |
+
table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
|
395 |
+
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
|
396 |
+
for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
|
397 |
+
box_data, img_classes = [], {}
|
398 |
+
for cls, *xywh in labels[:, 1:].tolist():
|
399 |
+
cls = int(cls)
|
400 |
+
box_data.append({"position": {"middle": [xywh[0], xywh[1]], "width": xywh[2], "height": xywh[3]},
|
401 |
+
"class_id": cls,
|
402 |
+
"box_caption": "%s" % (class_to_id[cls])})
|
403 |
+
img_classes[cls] = class_to_id[cls]
|
404 |
+
boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
|
405 |
+
table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), list(img_classes.values()),
|
406 |
+
Path(paths).name)
|
407 |
+
artifact.add(table, name)
|
408 |
+
return artifact
|
409 |
+
|
410 |
+
def log_training_progress(self, predn, path, names):
|
411 |
+
"""
|
412 |
+
Build evaluation Table. Uses reference from validation dataset table.
|
413 |
+
|
414 |
+
arguments:
|
415 |
+
predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
416 |
+
path (str): local path of the current evaluation image
|
417 |
+
names (dict(int, str)): hash map that maps class ids to labels
|
418 |
+
"""
|
419 |
+
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
|
420 |
+
box_data = []
|
421 |
+
total_conf = 0
|
422 |
+
for *xyxy, conf, cls in predn.tolist():
|
423 |
+
if conf >= 0.25:
|
424 |
+
box_data.append(
|
425 |
+
{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
|
426 |
+
"class_id": int(cls),
|
427 |
+
"box_caption": "%s %.3f" % (names[cls], conf),
|
428 |
+
"scores": {"class_score": conf},
|
429 |
+
"domain": "pixel"})
|
430 |
+
total_conf = total_conf + conf
|
431 |
+
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
432 |
+
id = self.val_table_path_map[Path(path).name]
|
433 |
+
self.result_table.add_data(self.current_epoch,
|
434 |
+
id,
|
435 |
+
self.val_table.data[id][1],
|
436 |
+
wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
|
437 |
+
total_conf / max(1, len(box_data))
|
438 |
+
)
|
439 |
+
|
440 |
+
def val_one_image(self, pred, predn, path, names, im):
|
441 |
+
"""
|
442 |
+
Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
|
443 |
+
|
444 |
+
arguments:
|
445 |
+
pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
446 |
+
predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
|
447 |
+
path (str): local path of the current evaluation image
|
448 |
+
"""
|
449 |
+
if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact
|
450 |
+
self.log_training_progress(predn, path, names)
|
451 |
+
|
452 |
+
if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
|
453 |
+
if self.current_epoch % self.bbox_interval == 0:
|
454 |
+
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
|
455 |
+
"class_id": int(cls),
|
456 |
+
"box_caption": "%s %.3f" % (names[cls], conf),
|
457 |
+
"scores": {"class_score": conf},
|
458 |
+
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
|
459 |
+
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
460 |
+
self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
|
461 |
+
|
462 |
+
def log(self, log_dict):
|
463 |
+
"""
|
464 |
+
save the metrics to the logging dictionary
|
465 |
+
|
466 |
+
arguments:
|
467 |
+
log_dict (Dict) -- metrics/media to be logged in current step
|
468 |
+
"""
|
469 |
+
if self.wandb_run:
|
470 |
+
for key, value in log_dict.items():
|
471 |
+
self.log_dict[key] = value
|
472 |
+
|
473 |
+
def end_epoch(self, best_result=False):
|
474 |
+
"""
|
475 |
+
commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
|
476 |
+
|
477 |
+
arguments:
|
478 |
+
best_result (boolean): Boolean representing if the result of this evaluation is best or not
|
479 |
+
"""
|
480 |
+
if self.wandb_run:
|
481 |
+
with all_logging_disabled():
|
482 |
+
if self.bbox_media_panel_images:
|
483 |
+
self.log_dict["Bounding Box Debugger/Images"] = self.bbox_media_panel_images
|
484 |
+
wandb.log(self.log_dict)
|
485 |
+
self.log_dict = {}
|
486 |
+
self.bbox_media_panel_images = []
|
487 |
+
if self.result_artifact:
|
488 |
+
self.result_artifact.add(self.result_table, 'result')
|
489 |
+
wandb.log_artifact(self.result_artifact, aliases=['latest', 'last', 'epoch ' + str(self.current_epoch),
|
490 |
+
('best' if best_result else '')])
|
491 |
+
|
492 |
+
wandb.log({"evaluation": self.result_table})
|
493 |
+
self.result_table = wandb.Table(["epoch", "id", "ground truth", "prediction", "avg_confidence"])
|
494 |
+
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
495 |
+
|
496 |
+
def finish_run(self):
|
497 |
+
"""
|
498 |
+
Log metrics if any and finish the current W&B run
|
499 |
+
"""
|
500 |
+
if self.wandb_run:
|
501 |
+
if self.log_dict:
|
502 |
+
with all_logging_disabled():
|
503 |
+
wandb.log(self.log_dict)
|
504 |
+
wandb.run.finish()
|
505 |
+
|
506 |
+
|
507 |
+
@contextmanager
|
508 |
+
def all_logging_disabled(highest_level=logging.CRITICAL):
|
509 |
+
""" source - https://gist.github.com/simon-weber/7853144
|
510 |
+
A context manager that will prevent any logging messages triggered during the body from being processed.
|
511 |
+
:param highest_level: the maximum logging level in use.
|
512 |
+
This would only need to be changed if a custom level greater than CRITICAL is defined.
|
513 |
+
"""
|
514 |
+
previous_level = logging.root.manager.disable
|
515 |
+
logging.disable(highest_level)
|
516 |
+
try:
|
517 |
+
yield
|
518 |
+
finally:
|
519 |
+
logging.disable(previous_level)
|
utils/loss.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Loss functions
|
4 |
+
"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
from utils.metrics import bbox_iou
|
10 |
+
from utils.torch_utils import is_parallel
|
11 |
+
|
12 |
+
|
13 |
+
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
14 |
+
# return positive, negative label smoothing BCE targets
|
15 |
+
return 1.0 - 0.5 * eps, 0.5 * eps
|
16 |
+
|
17 |
+
|
18 |
+
class BCEBlurWithLogitsLoss(nn.Module):
|
19 |
+
# BCEwithLogitLoss() with reduced missing label effects.
|
20 |
+
def __init__(self, alpha=0.05):
|
21 |
+
super(BCEBlurWithLogitsLoss, self).__init__()
|
22 |
+
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
|
23 |
+
self.alpha = alpha
|
24 |
+
|
25 |
+
def forward(self, pred, true):
|
26 |
+
loss = self.loss_fcn(pred, true)
|
27 |
+
pred = torch.sigmoid(pred) # prob from logits
|
28 |
+
dx = pred - true # reduce only missing label effects
|
29 |
+
# dx = (pred - true).abs() # reduce missing label and false label effects
|
30 |
+
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
|
31 |
+
loss *= alpha_factor
|
32 |
+
return loss.mean()
|
33 |
+
|
34 |
+
|
35 |
+
class FocalLoss(nn.Module):
|
36 |
+
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
37 |
+
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
38 |
+
super(FocalLoss, self).__init__()
|
39 |
+
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
40 |
+
self.gamma = gamma
|
41 |
+
self.alpha = alpha
|
42 |
+
self.reduction = loss_fcn.reduction
|
43 |
+
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
44 |
+
|
45 |
+
def forward(self, pred, true):
|
46 |
+
loss = self.loss_fcn(pred, true)
|
47 |
+
# p_t = torch.exp(-loss)
|
48 |
+
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
49 |
+
|
50 |
+
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
51 |
+
pred_prob = torch.sigmoid(pred) # prob from logits
|
52 |
+
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
53 |
+
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
54 |
+
modulating_factor = (1.0 - p_t) ** self.gamma
|
55 |
+
loss *= alpha_factor * modulating_factor
|
56 |
+
|
57 |
+
if self.reduction == 'mean':
|
58 |
+
return loss.mean()
|
59 |
+
elif self.reduction == 'sum':
|
60 |
+
return loss.sum()
|
61 |
+
else: # 'none'
|
62 |
+
return loss
|
63 |
+
|
64 |
+
|
65 |
+
class QFocalLoss(nn.Module):
|
66 |
+
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
67 |
+
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
68 |
+
super(QFocalLoss, self).__init__()
|
69 |
+
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
70 |
+
self.gamma = gamma
|
71 |
+
self.alpha = alpha
|
72 |
+
self.reduction = loss_fcn.reduction
|
73 |
+
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
74 |
+
|
75 |
+
def forward(self, pred, true):
|
76 |
+
loss = self.loss_fcn(pred, true)
|
77 |
+
|
78 |
+
pred_prob = torch.sigmoid(pred) # prob from logits
|
79 |
+
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
80 |
+
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
|
81 |
+
loss *= alpha_factor * modulating_factor
|
82 |
+
|
83 |
+
if self.reduction == 'mean':
|
84 |
+
return loss.mean()
|
85 |
+
elif self.reduction == 'sum':
|
86 |
+
return loss.sum()
|
87 |
+
else: # 'none'
|
88 |
+
return loss
|
89 |
+
|
90 |
+
|
91 |
+
class ComputeLoss:
|
92 |
+
# Compute losses
|
93 |
+
def __init__(self, model, autobalance=False, num_coords=0):
|
94 |
+
super(ComputeLoss, self).__init__()
|
95 |
+
self.sort_obj_iou = False
|
96 |
+
device = next(model.parameters()).device # get model device
|
97 |
+
h = model.hyp # hyperparameters
|
98 |
+
|
99 |
+
# Define criteria
|
100 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
101 |
+
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
102 |
+
|
103 |
+
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
104 |
+
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
105 |
+
|
106 |
+
# Focal loss
|
107 |
+
g = h['fl_gamma'] # focal loss gamma
|
108 |
+
if g > 0:
|
109 |
+
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
110 |
+
|
111 |
+
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
112 |
+
self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
|
113 |
+
self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
|
114 |
+
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
|
115 |
+
|
116 |
+
if self.autobalance:
|
117 |
+
self.loss_coeffs = model.module.loss_coeffs if is_parallel(model) else model.loss_coeffs[-1]
|
118 |
+
|
119 |
+
# for k in 'na', 'nc', 'nl', 'anchors':
|
120 |
+
# setattr(self, k, getattr(det, k))
|
121 |
+
self.num_coords = num_coords
|
122 |
+
self.na = det.na
|
123 |
+
self.nc = det.nc
|
124 |
+
self.nl = det.nl
|
125 |
+
self.anchors = det.anchors
|
126 |
+
|
127 |
+
def __call__(self, p, targets): # predictions, targets, model
|
128 |
+
device = targets.device
|
129 |
+
lcls = torch.zeros(1, device=device)
|
130 |
+
lbox = torch.zeros(1, device=device)
|
131 |
+
lobj = torch.zeros(1, device=device)
|
132 |
+
lkps = torch.zeros(1, device=device) # keypoint loss
|
133 |
+
tcls, tbox, tkps, indices, anchors = self.build_targets(p, targets) # targets
|
134 |
+
|
135 |
+
# Losses
|
136 |
+
for i, pi in enumerate(p): # layer index, layer predictions
|
137 |
+
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
138 |
+
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
|
139 |
+
|
140 |
+
n = b.shape[0] # number of targets
|
141 |
+
if n:
|
142 |
+
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
|
143 |
+
|
144 |
+
# Regression
|
145 |
+
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
146 |
+
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] # range [0, 4] * anchor
|
147 |
+
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
148 |
+
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
149 |
+
lbox += (1.0 - iou).mean() # iou loss
|
150 |
+
|
151 |
+
# Keypoints
|
152 |
+
if self.num_coords:
|
153 |
+
tkp = tkps[i]
|
154 |
+
vis = tkp[..., 2] > 0
|
155 |
+
tkp_vis = tkp[vis]
|
156 |
+
if len(tkp_vis):
|
157 |
+
pkp = ps[:, 5 + self.nc:].reshape((-1, self.num_coords // 2, 2))
|
158 |
+
pkp = (pkp.sigmoid() * 4. - 2.) * anchors[i][:, None, :] # range [-2, 2] * anchor
|
159 |
+
pkp_vis = pkp[vis]
|
160 |
+
l2 = torch.linalg.norm(pkp_vis - tkp_vis[..., :2], dim=-1)
|
161 |
+
lkps += torch.mean(l2)
|
162 |
+
|
163 |
+
# Objectness
|
164 |
+
score_iou = iou.detach().clamp(0).type(tobj.dtype)
|
165 |
+
if self.sort_obj_iou:
|
166 |
+
sort_id = torch.argsort(score_iou)
|
167 |
+
b, a, gj, gi, score_iou = b[sort_id], a[sort_id], gj[sort_id], gi[sort_id], score_iou[sort_id]
|
168 |
+
tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * score_iou # iou ratio
|
169 |
+
|
170 |
+
# Classification
|
171 |
+
if self.nc > 1: # cls loss (only if multiple classes)
|
172 |
+
t = torch.full_like(ps[:, 5:5 + self.nc], self.cn, device=device) # targets
|
173 |
+
t[range(n), tcls[i]] = self.cp
|
174 |
+
lcls += self.BCEcls(ps[:, 5:5 + self.nc], t) # BCE
|
175 |
+
|
176 |
+
# Append targets to text file
|
177 |
+
# with open('targets.txt', 'a') as file:
|
178 |
+
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
179 |
+
|
180 |
+
obji = self.BCEobj(pi[..., 4], tobj)
|
181 |
+
lobj += obji * self.balance[i] # obj loss
|
182 |
+
|
183 |
+
lbox *= self.hyp['box']
|
184 |
+
lobj *= self.hyp['obj']
|
185 |
+
lcls *= self.hyp['cls']
|
186 |
+
lkps *= self.hyp['kp']
|
187 |
+
|
188 |
+
if self.autobalance:
|
189 |
+
loss = (lbox + lobj + lcls) / (torch.exp(2 * self.loss_coeffs[0])) + self.loss_coeffs[0]
|
190 |
+
loss += lkps / (torch.exp(2 * self.loss_coeffs[1])) + self.loss_coeffs[1]
|
191 |
+
else:
|
192 |
+
loss = lbox + lobj + lcls + lkps
|
193 |
+
|
194 |
+
bs = tobj.shape[0] # batch size
|
195 |
+
|
196 |
+
return loss * bs, torch.cat((lbox, lobj, lcls, lkps)).detach()
|
197 |
+
|
198 |
+
def build_targets(self, p, targets):
|
199 |
+
# Build targets for compute_loss(), input targets(image,class,x,y,w,h, x1,y1,v1, ..., x17,y17,v17)
|
200 |
+
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
201 |
+
tcls, tbox, tkps, indices, anch = [], [], [], [], []
|
202 |
+
gain = torch.ones(7 + self.num_coords * 3 // 2, device=targets.device) # normalized to gridspace gain
|
203 |
+
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
204 |
+
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
205 |
+
|
206 |
+
g = 0.5 # bias
|
207 |
+
off = torch.tensor([[0, 0],
|
208 |
+
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
209 |
+
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
210 |
+
], device=targets.device).float() * g # offsets
|
211 |
+
|
212 |
+
for i in range(self.nl):
|
213 |
+
anchors = self.anchors[i]
|
214 |
+
xy_gain = torch.tensor(p[i].shape)[[3, 2]]
|
215 |
+
gain[2:4] = xy_gain
|
216 |
+
gain[4:6] = xy_gain
|
217 |
+
for j in range(self.num_coords // 2):
|
218 |
+
kp_idx = 6 + j * 3
|
219 |
+
gain[kp_idx:kp_idx + 2] = xy_gain
|
220 |
+
|
221 |
+
# Match targets to anchors
|
222 |
+
t = targets * gain
|
223 |
+
if nt:
|
224 |
+
# Matches
|
225 |
+
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
226 |
+
j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
227 |
+
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
228 |
+
t = t[j] # filter
|
229 |
+
|
230 |
+
# Offsets
|
231 |
+
gxy = t[:, 2:4] # grid xy
|
232 |
+
gxi = gain[[2, 3]] - gxy # inverse
|
233 |
+
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
234 |
+
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
235 |
+
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
236 |
+
t = t.repeat((5, 1, 1))[j]
|
237 |
+
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
238 |
+
else:
|
239 |
+
t = targets[0]
|
240 |
+
offsets = 0
|
241 |
+
|
242 |
+
# Define
|
243 |
+
b = t[:, 0].long() # image
|
244 |
+
c = t[:, 1].long() # class
|
245 |
+
gxy = t[:, 2:4] # grid xy
|
246 |
+
gwh = t[:, 4:6] # grid wh
|
247 |
+
gij = (gxy - offsets).long()
|
248 |
+
gi, gj = gij.T # grid xy indices
|
249 |
+
|
250 |
+
if self.num_coords:
|
251 |
+
kp = t[:, 6:-1].reshape(-1, self.num_coords // 2, 3)
|
252 |
+
kp[..., :2] -= gij[:, None, :] # grid kp relative to grid box anchor
|
253 |
+
tkps.append(kp)
|
254 |
+
|
255 |
+
# Append
|
256 |
+
a = t[:, -1].long() # anchor indices
|
257 |
+
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
258 |
+
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
259 |
+
anch.append(anchors[a]) # anchors
|
260 |
+
tcls.append(c) # class
|
261 |
+
|
262 |
+
return tcls, tbox, tkps, indices, anch
|
utils/metrics.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Model validation metrics
|
4 |
+
"""
|
5 |
+
|
6 |
+
import math
|
7 |
+
import warnings
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
|
14 |
+
|
15 |
+
def fitness(x):
|
16 |
+
# Model fitness as a weighted combination of metrics
|
17 |
+
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
18 |
+
return (x[:, :4] * w).sum(1)
|
19 |
+
|
20 |
+
|
21 |
+
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()):
|
22 |
+
""" Compute the average precision, given the recall and precision curves.
|
23 |
+
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
24 |
+
# Arguments
|
25 |
+
tp: True positives (nparray, nx1 or nx10).
|
26 |
+
conf: Objectness value from 0-1 (nparray).
|
27 |
+
pred_cls: Predicted object classes (nparray).
|
28 |
+
target_cls: True object classes (nparray).
|
29 |
+
plot: Plot precision-recall curve at mAP@0.5
|
30 |
+
save_dir: Plot save directory
|
31 |
+
# Returns
|
32 |
+
The average precision as computed in py-faster-rcnn.
|
33 |
+
"""
|
34 |
+
|
35 |
+
# Sort by objectness
|
36 |
+
i = np.argsort(-conf)
|
37 |
+
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
38 |
+
|
39 |
+
# Find unique classes
|
40 |
+
unique_classes = np.unique(target_cls)
|
41 |
+
nc = unique_classes.shape[0] # number of classes, number of detections
|
42 |
+
|
43 |
+
# Create Precision-Recall curve and compute AP for each class
|
44 |
+
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
45 |
+
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
|
46 |
+
for ci, c in enumerate(unique_classes):
|
47 |
+
i = pred_cls == c
|
48 |
+
n_l = (target_cls == c).sum() # number of labels
|
49 |
+
n_p = i.sum() # number of predictions
|
50 |
+
|
51 |
+
if n_p == 0 or n_l == 0:
|
52 |
+
continue
|
53 |
+
else:
|
54 |
+
# Accumulate FPs and TPs
|
55 |
+
fpc = (1 - tp[i]).cumsum(0)
|
56 |
+
tpc = tp[i].cumsum(0)
|
57 |
+
|
58 |
+
# Recall
|
59 |
+
recall = tpc / (n_l + 1e-16) # recall curve
|
60 |
+
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
|
61 |
+
|
62 |
+
# Precision
|
63 |
+
precision = tpc / (tpc + fpc) # precision curve
|
64 |
+
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
|
65 |
+
|
66 |
+
# AP from recall-precision curve
|
67 |
+
for j in range(tp.shape[1]):
|
68 |
+
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
69 |
+
if plot and j == 0:
|
70 |
+
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
71 |
+
|
72 |
+
# Compute F1 (harmonic mean of precision and recall)
|
73 |
+
f1 = 2 * p * r / (p + r + 1e-16)
|
74 |
+
if plot:
|
75 |
+
plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
|
76 |
+
plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
|
77 |
+
plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
|
78 |
+
plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
|
79 |
+
|
80 |
+
i = f1.mean(0).argmax() # max F1 index
|
81 |
+
return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
|
82 |
+
|
83 |
+
|
84 |
+
def compute_ap(recall, precision):
|
85 |
+
""" Compute the average precision, given the recall and precision curves
|
86 |
+
# Arguments
|
87 |
+
recall: The recall curve (list)
|
88 |
+
precision: The precision curve (list)
|
89 |
+
# Returns
|
90 |
+
Average precision, precision curve, recall curve
|
91 |
+
"""
|
92 |
+
|
93 |
+
# Append sentinel values to beginning and end
|
94 |
+
mrec = np.concatenate(([0.0], recall, [1.0]))
|
95 |
+
mpre = np.concatenate(([1.0], precision, [0.0]))
|
96 |
+
|
97 |
+
# Compute the precision envelope
|
98 |
+
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
99 |
+
|
100 |
+
# Integrate area under curve
|
101 |
+
method = 'interp' # methods: 'continuous', 'interp'
|
102 |
+
if method == 'interp':
|
103 |
+
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
104 |
+
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
105 |
+
else: # 'continuous'
|
106 |
+
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
107 |
+
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
108 |
+
|
109 |
+
return ap, mpre, mrec
|
110 |
+
|
111 |
+
|
112 |
+
class ConfusionMatrix:
|
113 |
+
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
114 |
+
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
115 |
+
self.matrix = np.zeros((nc + 1, nc + 1))
|
116 |
+
self.nc = nc # number of classes
|
117 |
+
self.conf = conf
|
118 |
+
self.iou_thres = iou_thres
|
119 |
+
|
120 |
+
def process_batch(self, detections, labels):
|
121 |
+
"""
|
122 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
123 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
124 |
+
Arguments:
|
125 |
+
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
126 |
+
labels (Array[M, 5]), class, x1, y1, x2, y2
|
127 |
+
Returns:
|
128 |
+
None, updates confusion matrix accordingly
|
129 |
+
"""
|
130 |
+
detections = detections[detections[:, 4] > self.conf]
|
131 |
+
gt_classes = labels[:, 0].int()
|
132 |
+
detection_classes = detections[:, 5].int()
|
133 |
+
iou = box_iou(labels[:, 1:], detections[:, :4])
|
134 |
+
|
135 |
+
x = torch.where(iou > self.iou_thres)
|
136 |
+
if x[0].shape[0]:
|
137 |
+
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
138 |
+
if x[0].shape[0] > 1:
|
139 |
+
matches = matches[matches[:, 2].argsort()[::-1]]
|
140 |
+
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
141 |
+
matches = matches[matches[:, 2].argsort()[::-1]]
|
142 |
+
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
143 |
+
else:
|
144 |
+
matches = np.zeros((0, 3))
|
145 |
+
|
146 |
+
n = matches.shape[0] > 0
|
147 |
+
m0, m1, _ = matches.transpose().astype(np.int16)
|
148 |
+
for i, gc in enumerate(gt_classes):
|
149 |
+
j = m0 == i
|
150 |
+
if n and sum(j) == 1:
|
151 |
+
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
|
152 |
+
else:
|
153 |
+
self.matrix[self.nc, gc] += 1 # background FP
|
154 |
+
|
155 |
+
if n:
|
156 |
+
for i, dc in enumerate(detection_classes):
|
157 |
+
if not any(m1 == i):
|
158 |
+
self.matrix[dc, self.nc] += 1 # background FN
|
159 |
+
|
160 |
+
def matrix(self):
|
161 |
+
return self.matrix
|
162 |
+
|
163 |
+
def plot(self, normalize=True, save_dir='', names=()):
|
164 |
+
try:
|
165 |
+
import seaborn as sn
|
166 |
+
|
167 |
+
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-6) if normalize else 1) # normalize columns
|
168 |
+
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
|
169 |
+
|
170 |
+
fig = plt.figure(figsize=(12, 9), tight_layout=True)
|
171 |
+
sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
|
172 |
+
labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
|
173 |
+
with warnings.catch_warnings():
|
174 |
+
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
|
175 |
+
sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
|
176 |
+
xticklabels=names + ['background FP'] if labels else "auto",
|
177 |
+
yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
|
178 |
+
fig.axes[0].set_xlabel('True')
|
179 |
+
fig.axes[0].set_ylabel('Predicted')
|
180 |
+
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
181 |
+
plt.close()
|
182 |
+
except Exception as e:
|
183 |
+
print(f'WARNING: ConfusionMatrix plot failure: {e}')
|
184 |
+
|
185 |
+
def print(self):
|
186 |
+
for i in range(self.nc + 1):
|
187 |
+
print(' '.join(map(str, self.matrix[i])))
|
188 |
+
|
189 |
+
|
190 |
+
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
191 |
+
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
|
192 |
+
box2 = box2.T
|
193 |
+
|
194 |
+
# Get the coordinates of bounding boxes
|
195 |
+
if x1y1x2y2: # x1, y1, x2, y2 = box1
|
196 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
197 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
198 |
+
else: # transform from xywh to xyxy
|
199 |
+
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
|
200 |
+
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
|
201 |
+
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
|
202 |
+
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
|
203 |
+
|
204 |
+
# Intersection area
|
205 |
+
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
206 |
+
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
207 |
+
|
208 |
+
# Union Area
|
209 |
+
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
210 |
+
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
211 |
+
union = w1 * h1 + w2 * h2 - inter + eps
|
212 |
+
|
213 |
+
iou = inter / union
|
214 |
+
if GIoU or DIoU or CIoU:
|
215 |
+
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
|
216 |
+
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
217 |
+
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
218 |
+
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
219 |
+
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
|
220 |
+
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
|
221 |
+
if DIoU:
|
222 |
+
return iou - rho2 / c2 # DIoU
|
223 |
+
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
224 |
+
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
|
225 |
+
with torch.no_grad():
|
226 |
+
alpha = v / (v - iou + (1 + eps))
|
227 |
+
return iou - (rho2 / c2 + v * alpha) # CIoU
|
228 |
+
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
229 |
+
c_area = cw * ch + eps # convex area
|
230 |
+
return iou - (c_area - union) / c_area # GIoU
|
231 |
+
else:
|
232 |
+
return iou # IoU
|
233 |
+
|
234 |
+
|
235 |
+
def box_iou(box1, box2):
|
236 |
+
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
237 |
+
"""
|
238 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
239 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
240 |
+
Arguments:
|
241 |
+
box1 (Tensor[N, 4])
|
242 |
+
box2 (Tensor[M, 4])
|
243 |
+
Returns:
|
244 |
+
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
245 |
+
IoU values for every element in boxes1 and boxes2
|
246 |
+
"""
|
247 |
+
|
248 |
+
def box_area(box):
|
249 |
+
# box = 4xn
|
250 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
251 |
+
|
252 |
+
area1 = box_area(box1.T)
|
253 |
+
area2 = box_area(box2.T)
|
254 |
+
|
255 |
+
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
256 |
+
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
257 |
+
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
|
258 |
+
|
259 |
+
|
260 |
+
def bbox_ioa(box1, box2, eps=1E-7):
|
261 |
+
""" Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
|
262 |
+
box1: np.array of shape(4)
|
263 |
+
box2: np.array of shape(nx4)
|
264 |
+
returns: np.array of shape(n)
|
265 |
+
"""
|
266 |
+
|
267 |
+
box2 = box2.transpose()
|
268 |
+
|
269 |
+
# Get the coordinates of bounding boxes
|
270 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
271 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
272 |
+
|
273 |
+
# Intersection area
|
274 |
+
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
275 |
+
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
|
276 |
+
|
277 |
+
# box2 area
|
278 |
+
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
|
279 |
+
|
280 |
+
# Intersection over box2 area
|
281 |
+
return inter_area / box2_area
|
282 |
+
|
283 |
+
|
284 |
+
def wh_iou(wh1, wh2):
|
285 |
+
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
286 |
+
wh1 = wh1[:, None] # [N,1,2]
|
287 |
+
wh2 = wh2[None] # [1,M,2]
|
288 |
+
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
289 |
+
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
|
290 |
+
|
291 |
+
|
292 |
+
# Plots ----------------------------------------------------------------------------------------------------------------
|
293 |
+
|
294 |
+
def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
|
295 |
+
# Precision-recall curve
|
296 |
+
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
297 |
+
py = np.stack(py, axis=1)
|
298 |
+
|
299 |
+
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
300 |
+
for i, y in enumerate(py.T):
|
301 |
+
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
|
302 |
+
else:
|
303 |
+
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
|
304 |
+
|
305 |
+
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
306 |
+
ax.set_xlabel('Recall')
|
307 |
+
ax.set_ylabel('Precision')
|
308 |
+
ax.set_xlim(0, 1)
|
309 |
+
ax.set_ylim(0, 1)
|
310 |
+
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
311 |
+
fig.savefig(Path(save_dir), dpi=250)
|
312 |
+
plt.close()
|
313 |
+
|
314 |
+
|
315 |
+
def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
|
316 |
+
# Metric-confidence curve
|
317 |
+
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
318 |
+
|
319 |
+
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
320 |
+
for i, y in enumerate(py):
|
321 |
+
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
|
322 |
+
else:
|
323 |
+
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
|
324 |
+
|
325 |
+
y = py.mean(0)
|
326 |
+
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
|
327 |
+
ax.set_xlabel(xlabel)
|
328 |
+
ax.set_ylabel(ylabel)
|
329 |
+
ax.set_xlim(0, 1)
|
330 |
+
ax.set_ylim(0, 1)
|
331 |
+
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
332 |
+
fig.savefig(Path(save_dir), dpi=250)
|
333 |
+
plt.close()
|
utils/plots.py
ADDED
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Plotting utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import math
|
7 |
+
from copy import copy
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
import cv2
|
11 |
+
import matplotlib
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
import seaborn as sn
|
16 |
+
import torch
|
17 |
+
from PIL import Image, ImageDraw, ImageFont
|
18 |
+
|
19 |
+
from utils.general import is_ascii, xyxy2xywh, xywh2xyxy
|
20 |
+
from utils.metrics import fitness
|
21 |
+
|
22 |
+
# Settings
|
23 |
+
matplotlib.rc('font', **{'size': 11})
|
24 |
+
matplotlib.use('Agg') # for writing to files only
|
25 |
+
|
26 |
+
FILE = Path(__file__).absolute()
|
27 |
+
ROOT = FILE.parents[1] # yolov5/ dir
|
28 |
+
|
29 |
+
|
30 |
+
class Colors:
|
31 |
+
# Ultralytics color palette https://ultralytics.com/
|
32 |
+
def __init__(self):
|
33 |
+
# hex = matplotlib.colors.TABLEAU_COLORS.values()
|
34 |
+
hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
|
35 |
+
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
|
36 |
+
self.palette = [self.hex2rgb('#' + c) for c in hex]
|
37 |
+
self.n = len(self.palette)
|
38 |
+
|
39 |
+
def __call__(self, i, bgr=False):
|
40 |
+
c = self.palette[int(i) % self.n]
|
41 |
+
return (c[2], c[1], c[0]) if bgr else c
|
42 |
+
|
43 |
+
@staticmethod
|
44 |
+
def hex2rgb(h): # rgb order (PIL)
|
45 |
+
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
|
46 |
+
|
47 |
+
|
48 |
+
colors = Colors() # create instance for 'from utils.plots import colors'
|
49 |
+
|
50 |
+
|
51 |
+
def check_font(font='Arial.ttf', size=10):
|
52 |
+
# Return a PIL TrueType Font, downloading to ROOT dir if necessary
|
53 |
+
font = Path(font)
|
54 |
+
font = font if font.exists() else (ROOT / font.name)
|
55 |
+
try:
|
56 |
+
return ImageFont.truetype(str(font) if font.exists() else font.name, size)
|
57 |
+
except Exception as e: # download if missing
|
58 |
+
url = "https://ultralytics.com/assets/" + font.name
|
59 |
+
print(f'Downloading {url} to {font}...')
|
60 |
+
torch.hub.download_url_to_file(url, str(font))
|
61 |
+
return ImageFont.truetype(str(font), size)
|
62 |
+
|
63 |
+
|
64 |
+
class Annotator:
|
65 |
+
check_font() # download TTF if necessary
|
66 |
+
|
67 |
+
# YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
|
68 |
+
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=True):
|
69 |
+
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
|
70 |
+
self.pil = pil
|
71 |
+
if self.pil: # use PIL
|
72 |
+
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
|
73 |
+
self.draw = ImageDraw.Draw(self.im)
|
74 |
+
self.font = check_font(font, size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
|
75 |
+
self.fh = self.font.getsize('a')[1] - 3 # font height
|
76 |
+
else: # use cv2
|
77 |
+
self.im = im
|
78 |
+
self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width
|
79 |
+
|
80 |
+
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
|
81 |
+
# Add one xyxy box to image with label
|
82 |
+
if self.pil or not is_ascii(label):
|
83 |
+
self.draw.rectangle(box, width=self.lw, outline=color) # box
|
84 |
+
if label:
|
85 |
+
w = self.font.getsize(label)[0] # text width
|
86 |
+
self.draw.rectangle([box[0], box[1] - self.fh, box[0] + w + 1, box[1] + 1], fill=color)
|
87 |
+
self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')
|
88 |
+
else: # cv2
|
89 |
+
c1, c2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
|
90 |
+
cv2.rectangle(self.im, c1, c2, color, thickness=self.lw, lineType=cv2.LINE_AA)
|
91 |
+
if label:
|
92 |
+
tf = max(self.lw - 1, 1) # font thickness
|
93 |
+
w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0]
|
94 |
+
c2 = c1[0] + w, c1[1] - h - 3
|
95 |
+
cv2.rectangle(self.im, c1, c2, color, -1, cv2.LINE_AA) # filled
|
96 |
+
cv2.putText(self.im, label, (c1[0], c1[1] - 2), 0, self.lw / 3, txt_color, thickness=tf,
|
97 |
+
lineType=cv2.LINE_AA)
|
98 |
+
|
99 |
+
def rectangle(self, xy, fill=None, outline=None, width=1):
|
100 |
+
# Add rectangle to image (PIL-only)
|
101 |
+
self.draw.rectangle(xy, fill, outline, width)
|
102 |
+
|
103 |
+
def text(self, xy, text, txt_color=(255, 255, 255)):
|
104 |
+
# Add text to image (PIL-only)
|
105 |
+
w, h = self.font.getsize(text) # text width, height
|
106 |
+
self.draw.text((xy[0], xy[1] - h + 1), text, fill=txt_color, font=self.font)
|
107 |
+
|
108 |
+
def result(self):
|
109 |
+
# Return annotated image as array
|
110 |
+
return np.asarray(self.im)
|
111 |
+
|
112 |
+
|
113 |
+
def hist2d(x, y, n=100):
|
114 |
+
# 2d histogram used in labels.png and evolve.png
|
115 |
+
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
|
116 |
+
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
|
117 |
+
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
|
118 |
+
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
|
119 |
+
return np.log(hist[xidx, yidx])
|
120 |
+
|
121 |
+
|
122 |
+
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
|
123 |
+
from scipy.signal import butter, filtfilt
|
124 |
+
|
125 |
+
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
|
126 |
+
def butter_lowpass(cutoff, fs, order):
|
127 |
+
nyq = 0.5 * fs
|
128 |
+
normal_cutoff = cutoff / nyq
|
129 |
+
return butter(order, normal_cutoff, btype='low', analog=False)
|
130 |
+
|
131 |
+
b, a = butter_lowpass(cutoff, fs, order=order)
|
132 |
+
return filtfilt(b, a, data) # forward-backward filter
|
133 |
+
|
134 |
+
|
135 |
+
def output_to_target(output):
|
136 |
+
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
|
137 |
+
targets = []
|
138 |
+
for i, o in enumerate(output):
|
139 |
+
for *box, conf, cls in o.cpu().numpy():
|
140 |
+
targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
|
141 |
+
return np.array(targets)
|
142 |
+
|
143 |
+
|
144 |
+
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=1920, max_subplots=16):
|
145 |
+
# Plot image grid with labels
|
146 |
+
if isinstance(images, torch.Tensor):
|
147 |
+
images = images.cpu().float().numpy()
|
148 |
+
if isinstance(targets, torch.Tensor):
|
149 |
+
targets = targets.cpu().numpy()
|
150 |
+
if np.max(images[0]) <= 1:
|
151 |
+
images *= 255.0 # de-normalise (optional)
|
152 |
+
bs, _, h, w = images.shape # batch size, _, height, width
|
153 |
+
bs = min(bs, max_subplots) # limit plot images
|
154 |
+
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
155 |
+
|
156 |
+
# Build Image
|
157 |
+
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
158 |
+
for i, im in enumerate(images):
|
159 |
+
if i == max_subplots: # if last batch has fewer images than we expect
|
160 |
+
break
|
161 |
+
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
162 |
+
im = im.transpose(1, 2, 0)
|
163 |
+
mosaic[y:y + h, x:x + w, :] = im
|
164 |
+
|
165 |
+
# Resize (optional)
|
166 |
+
scale = max_size / ns / max(h, w)
|
167 |
+
if scale < 1:
|
168 |
+
h = math.ceil(scale * h)
|
169 |
+
w = math.ceil(scale * w)
|
170 |
+
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
|
171 |
+
|
172 |
+
# Annotate
|
173 |
+
fs = int((h + w) * ns * 0.01) # font size
|
174 |
+
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs)
|
175 |
+
for i in range(i + 1):
|
176 |
+
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
177 |
+
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
|
178 |
+
if paths:
|
179 |
+
annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
|
180 |
+
if len(targets) > 0:
|
181 |
+
ti = targets[targets[:, 0] == i] # image targets
|
182 |
+
boxes = xywh2xyxy(ti[:, 2:6]).T
|
183 |
+
classes = ti[:, 1].astype('int')
|
184 |
+
labels = ti.shape[1] == 6 or ti.shape[1] > 7 # labels if no conf column or pose objects
|
185 |
+
conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
|
186 |
+
|
187 |
+
if boxes.shape[1]:
|
188 |
+
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
189 |
+
boxes[[0, 2]] *= w # scale to pixels
|
190 |
+
boxes[[1, 3]] *= h
|
191 |
+
elif scale < 1: # absolute coords need scale if image scales
|
192 |
+
boxes *= scale
|
193 |
+
boxes[[0, 2]] += x
|
194 |
+
boxes[[1, 3]] += y
|
195 |
+
for j, box in enumerate(boxes.T.tolist()):
|
196 |
+
cls = classes[j]
|
197 |
+
color = colors(cls)
|
198 |
+
cls = names[cls] if names else cls
|
199 |
+
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
200 |
+
label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
|
201 |
+
annotator.box_label(box, label, color=color)
|
202 |
+
annotator.im.save(fname) # save
|
203 |
+
|
204 |
+
|
205 |
+
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
|
206 |
+
# Plot LR simulating training for full epochs
|
207 |
+
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
|
208 |
+
y = []
|
209 |
+
for _ in range(epochs):
|
210 |
+
scheduler.step()
|
211 |
+
y.append(optimizer.param_groups[0]['lr'])
|
212 |
+
plt.plot(y, '.-', label='LR')
|
213 |
+
plt.xlabel('epoch')
|
214 |
+
plt.ylabel('LR')
|
215 |
+
plt.grid()
|
216 |
+
plt.xlim(0, epochs)
|
217 |
+
plt.ylim(0)
|
218 |
+
plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
|
219 |
+
plt.close()
|
220 |
+
|
221 |
+
|
222 |
+
def plot_val_txt(): # from utils.plots import *; plot_val()
|
223 |
+
# Plot val.txt histograms
|
224 |
+
x = np.loadtxt('val.txt', dtype=np.float32)
|
225 |
+
box = xyxy2xywh(x[:, :4])
|
226 |
+
cx, cy = box[:, 0], box[:, 1]
|
227 |
+
|
228 |
+
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
|
229 |
+
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
|
230 |
+
ax.set_aspect('equal')
|
231 |
+
plt.savefig('hist2d.png', dpi=300)
|
232 |
+
|
233 |
+
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
|
234 |
+
ax[0].hist(cx, bins=600)
|
235 |
+
ax[1].hist(cy, bins=600)
|
236 |
+
plt.savefig('hist1d.png', dpi=200)
|
237 |
+
|
238 |
+
|
239 |
+
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
|
240 |
+
# Plot targets.txt histograms
|
241 |
+
x = np.loadtxt('targets.txt', dtype=np.float32).T
|
242 |
+
s = ['x targets', 'y targets', 'width targets', 'height targets']
|
243 |
+
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
|
244 |
+
ax = ax.ravel()
|
245 |
+
for i in range(4):
|
246 |
+
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
|
247 |
+
ax[i].legend()
|
248 |
+
ax[i].set_title(s[i])
|
249 |
+
plt.savefig('targets.jpg', dpi=200)
|
250 |
+
|
251 |
+
|
252 |
+
def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
|
253 |
+
# Plot study.txt generated by val.py
|
254 |
+
plot2 = False # plot additional results
|
255 |
+
if plot2:
|
256 |
+
ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
|
257 |
+
|
258 |
+
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
|
259 |
+
# for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
|
260 |
+
for f in sorted(Path(path).glob('study*.txt')):
|
261 |
+
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
|
262 |
+
x = np.arange(y.shape[1]) if x is None else np.array(x)
|
263 |
+
if plot2:
|
264 |
+
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)']
|
265 |
+
for i in range(7):
|
266 |
+
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
|
267 |
+
ax[i].set_title(s[i])
|
268 |
+
|
269 |
+
j = y[3].argmax() + 1
|
270 |
+
ax2.plot(y[5, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
|
271 |
+
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
|
272 |
+
|
273 |
+
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
|
274 |
+
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
|
275 |
+
|
276 |
+
ax2.grid(alpha=0.2)
|
277 |
+
ax2.set_yticks(np.arange(20, 60, 5))
|
278 |
+
ax2.set_xlim(0, 57)
|
279 |
+
ax2.set_ylim(30, 55)
|
280 |
+
ax2.set_xlabel('GPU Speed (ms/img)')
|
281 |
+
ax2.set_ylabel('COCO AP val')
|
282 |
+
ax2.legend(loc='lower right')
|
283 |
+
plt.savefig(str(Path(path).name) + '.png', dpi=300)
|
284 |
+
|
285 |
+
|
286 |
+
def plot_labels(labels, names=(), save_dir=Path('')):
|
287 |
+
# plot dataset labels
|
288 |
+
print('Plotting labels... ')
|
289 |
+
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
|
290 |
+
nc = int(c.max() + 1) # number of classes
|
291 |
+
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
|
292 |
+
|
293 |
+
# seaborn correlogram
|
294 |
+
sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
|
295 |
+
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
|
296 |
+
plt.close()
|
297 |
+
|
298 |
+
# matplotlib labels
|
299 |
+
matplotlib.use('svg') # faster
|
300 |
+
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
|
301 |
+
y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
|
302 |
+
# [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # update colors bug #3195
|
303 |
+
ax[0].set_ylabel('instances')
|
304 |
+
if 0 < len(names) < 30:
|
305 |
+
ax[0].set_xticks(range(len(names)))
|
306 |
+
ax[0].set_xticklabels(names, rotation=90, fontsize=10)
|
307 |
+
else:
|
308 |
+
ax[0].set_xlabel('classes')
|
309 |
+
sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
|
310 |
+
sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
|
311 |
+
|
312 |
+
# rectangles
|
313 |
+
labels[:, 1:3] = 0.5 # center
|
314 |
+
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
|
315 |
+
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
|
316 |
+
for cls, *box in labels[:1000]:
|
317 |
+
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
|
318 |
+
ax[1].imshow(img)
|
319 |
+
ax[1].axis('off')
|
320 |
+
|
321 |
+
for a in [0, 1, 2, 3]:
|
322 |
+
for s in ['top', 'right', 'left', 'bottom']:
|
323 |
+
ax[a].spines[s].set_visible(False)
|
324 |
+
|
325 |
+
plt.savefig(save_dir / 'labels.jpg', dpi=200)
|
326 |
+
matplotlib.use('Agg')
|
327 |
+
plt.close()
|
328 |
+
|
329 |
+
|
330 |
+
def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
|
331 |
+
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
|
332 |
+
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
|
333 |
+
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
|
334 |
+
files = list(Path(save_dir).glob('frames*.txt'))
|
335 |
+
for fi, f in enumerate(files):
|
336 |
+
try:
|
337 |
+
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
|
338 |
+
n = results.shape[1] # number of rows
|
339 |
+
x = np.arange(start, min(stop, n) if stop else n)
|
340 |
+
results = results[:, x]
|
341 |
+
t = (results[0] - results[0].min()) # set t0=0s
|
342 |
+
results[0] = x
|
343 |
+
for i, a in enumerate(ax):
|
344 |
+
if i < len(results):
|
345 |
+
label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
|
346 |
+
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
|
347 |
+
a.set_title(s[i])
|
348 |
+
a.set_xlabel('time (s)')
|
349 |
+
# if fi == len(files) - 1:
|
350 |
+
# a.set_ylim(bottom=0)
|
351 |
+
for side in ['top', 'right']:
|
352 |
+
a.spines[side].set_visible(False)
|
353 |
+
else:
|
354 |
+
a.remove()
|
355 |
+
except Exception as e:
|
356 |
+
print('Warning: Plotting error for %s; %s' % (f, e))
|
357 |
+
ax[1].legend()
|
358 |
+
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
|
359 |
+
|
360 |
+
|
361 |
+
def plot_evolve(evolve_csv='path/to/evolve.csv'): # from utils.plots import *; plot_evolve()
|
362 |
+
# Plot evolve.csv hyp evolution results
|
363 |
+
evolve_csv = Path(evolve_csv)
|
364 |
+
data = pd.read_csv(evolve_csv)
|
365 |
+
keys = [x.strip() for x in data.columns]
|
366 |
+
x = data.values
|
367 |
+
f = fitness(x)
|
368 |
+
j = np.argmax(f) # max fitness index
|
369 |
+
plt.figure(figsize=(10, 12), tight_layout=True)
|
370 |
+
matplotlib.rc('font', **{'size': 8})
|
371 |
+
for i, k in enumerate(keys[7:]):
|
372 |
+
v = x[:, 7 + i]
|
373 |
+
mu = v[j] # best single result
|
374 |
+
plt.subplot(6, 5, i + 1)
|
375 |
+
plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
|
376 |
+
plt.plot(mu, f.max(), 'k+', markersize=15)
|
377 |
+
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
|
378 |
+
if i % 5 != 0:
|
379 |
+
plt.yticks([])
|
380 |
+
print('%15s: %.3g' % (k, mu))
|
381 |
+
f = evolve_csv.with_suffix('.png') # filename
|
382 |
+
plt.savefig(f, dpi=200)
|
383 |
+
plt.close()
|
384 |
+
print(f'Saved {f}')
|
385 |
+
|
386 |
+
|
387 |
+
def plot_results(file='path/to/results.csv', dir=''):
|
388 |
+
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
|
389 |
+
save_dir = Path(file).parent if file else Path(dir)
|
390 |
+
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
391 |
+
ax = ax.ravel()
|
392 |
+
files = list(save_dir.glob('results*.csv'))
|
393 |
+
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
|
394 |
+
for fi, f in enumerate(files):
|
395 |
+
try:
|
396 |
+
data = pd.read_csv(f)
|
397 |
+
s = [x.strip() for x in data.columns]
|
398 |
+
x = data.values[:, 0]
|
399 |
+
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
|
400 |
+
y = data.values[:, j]
|
401 |
+
# y[y == 0] = np.nan # don't show zero values
|
402 |
+
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
|
403 |
+
ax[i].set_title(s[j], fontsize=12)
|
404 |
+
# if j in [8, 9, 10]: # share train and val loss y axes
|
405 |
+
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
406 |
+
except Exception as e:
|
407 |
+
print(f'Warning: Plotting error for {f}: {e}')
|
408 |
+
ax[1].legend()
|
409 |
+
fig.savefig(save_dir / 'results.png', dpi=200)
|
410 |
+
plt.close()
|
411 |
+
|
412 |
+
|
413 |
+
def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
|
414 |
+
"""
|
415 |
+
x: Features to be visualized
|
416 |
+
module_type: Module type
|
417 |
+
stage: Module stage within model
|
418 |
+
n: Maximum number of feature maps to plot
|
419 |
+
save_dir: Directory to save results
|
420 |
+
"""
|
421 |
+
if 'Detect' not in module_type:
|
422 |
+
batch, channels, height, width = x.shape # batch, channels, height, width
|
423 |
+
if height > 1 and width > 1:
|
424 |
+
f = f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
|
425 |
+
|
426 |
+
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
|
427 |
+
n = min(n, channels) # number of plots
|
428 |
+
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
|
429 |
+
ax = ax.ravel()
|
430 |
+
plt.subplots_adjust(wspace=0.05, hspace=0.05)
|
431 |
+
for i in range(n):
|
432 |
+
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
|
433 |
+
ax[i].axis('off')
|
434 |
+
|
435 |
+
print(f'Saving {save_dir / f}... ({n}/{channels})')
|
436 |
+
plt.savefig(save_dir / f, dpi=300, bbox_inches='tight')
|
437 |
+
plt.close()
|
utils/torch_utils.py
ADDED
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
PyTorch utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import datetime
|
7 |
+
import logging
|
8 |
+
import math
|
9 |
+
import os
|
10 |
+
import platform
|
11 |
+
import subprocess
|
12 |
+
import time
|
13 |
+
from contextlib import contextmanager
|
14 |
+
from copy import deepcopy
|
15 |
+
from pathlib import Path
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.backends.cudnn as cudnn
|
19 |
+
import torch.distributed as dist
|
20 |
+
import torch.nn as nn
|
21 |
+
import torch.nn.functional as F
|
22 |
+
import torchvision
|
23 |
+
|
24 |
+
try:
|
25 |
+
import thop # for FLOPs computation
|
26 |
+
except ImportError:
|
27 |
+
thop = None
|
28 |
+
|
29 |
+
LOGGER = logging.getLogger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
@contextmanager
|
33 |
+
def torch_distributed_zero_first(local_rank: int):
|
34 |
+
"""
|
35 |
+
Decorator to make all processes in distributed training wait for each local_master to do something.
|
36 |
+
"""
|
37 |
+
if local_rank not in [-1, 0]:
|
38 |
+
dist.barrier(device_ids=[local_rank])
|
39 |
+
yield
|
40 |
+
if local_rank == 0:
|
41 |
+
dist.barrier(device_ids=[0])
|
42 |
+
|
43 |
+
|
44 |
+
def init_torch_seeds(seed=0):
|
45 |
+
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
|
46 |
+
torch.manual_seed(seed)
|
47 |
+
if seed == 0: # slower, more reproducible
|
48 |
+
cudnn.benchmark, cudnn.deterministic = False, True
|
49 |
+
else: # faster, less reproducible
|
50 |
+
cudnn.benchmark, cudnn.deterministic = True, False
|
51 |
+
|
52 |
+
|
53 |
+
def date_modified(path=__file__):
|
54 |
+
# return human-readable file modification date, i.e. '2021-3-26'
|
55 |
+
t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
|
56 |
+
return f'{t.year}-{t.month}-{t.day}'
|
57 |
+
|
58 |
+
|
59 |
+
def git_describe(path=Path(__file__).parent): # path must be a directory
|
60 |
+
# return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
|
61 |
+
s = f'git -C {path} describe --tags --long --always'
|
62 |
+
try:
|
63 |
+
return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
|
64 |
+
except subprocess.CalledProcessError as e:
|
65 |
+
return '' # not a git repository
|
66 |
+
|
67 |
+
|
68 |
+
def select_device(device='', batch_size=None):
|
69 |
+
# device = 'cpu' or '0' or '0,1,2,3'
|
70 |
+
s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
|
71 |
+
device = str(device).strip().lower().replace('cuda:', '') # to string, 'cuda:0' to '0'
|
72 |
+
cpu = device == 'cpu'
|
73 |
+
if cpu:
|
74 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
|
75 |
+
elif device: # non-cpu device requested
|
76 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
|
77 |
+
assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
|
78 |
+
|
79 |
+
cuda = not cpu and torch.cuda.is_available()
|
80 |
+
if cuda:
|
81 |
+
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
|
82 |
+
n = len(devices) # device count
|
83 |
+
if n > 1 and batch_size: # check batch_size is divisible by device_count
|
84 |
+
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
85 |
+
space = ' ' * (len(s) + 1)
|
86 |
+
for i, d in enumerate(devices):
|
87 |
+
p = torch.cuda.get_device_properties(i)
|
88 |
+
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
|
89 |
+
else:
|
90 |
+
s += 'CPU\n'
|
91 |
+
|
92 |
+
LOGGER.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
|
93 |
+
return torch.device('cuda:0' if cuda else 'cpu')
|
94 |
+
|
95 |
+
|
96 |
+
def time_sync():
|
97 |
+
# pytorch-accurate time
|
98 |
+
if torch.cuda.is_available():
|
99 |
+
torch.cuda.synchronize()
|
100 |
+
return time.time()
|
101 |
+
|
102 |
+
|
103 |
+
def profile(input, ops, n=10, device=None):
|
104 |
+
# YOLOv5 speed/memory/FLOPs profiler
|
105 |
+
#
|
106 |
+
# Usage:
|
107 |
+
# input = torch.randn(16, 3, 640, 640)
|
108 |
+
# m1 = lambda x: x * torch.sigmoid(x)
|
109 |
+
# m2 = nn.SiLU()
|
110 |
+
# profile(input, [m1, m2], n=100) # profile over 100 iterations
|
111 |
+
|
112 |
+
results = []
|
113 |
+
logging.basicConfig(format="%(message)s", level=logging.INFO)
|
114 |
+
device = device or select_device()
|
115 |
+
print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
|
116 |
+
f"{'input':>24s}{'output':>24s}")
|
117 |
+
|
118 |
+
for x in input if isinstance(input, list) else [input]:
|
119 |
+
x = x.to(device)
|
120 |
+
x.requires_grad = True
|
121 |
+
for m in ops if isinstance(ops, list) else [ops]:
|
122 |
+
m = m.to(device) if hasattr(m, 'to') else m # device
|
123 |
+
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
|
124 |
+
tf, tb, t = 0., 0., [0., 0., 0.] # dt forward, backward
|
125 |
+
try:
|
126 |
+
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs
|
127 |
+
except:
|
128 |
+
flops = 0
|
129 |
+
|
130 |
+
try:
|
131 |
+
for _ in range(n):
|
132 |
+
t[0] = time_sync()
|
133 |
+
y = m(x)
|
134 |
+
t[1] = time_sync()
|
135 |
+
try:
|
136 |
+
_ = (sum([yi.sum() for yi in y]) if isinstance(y, list) else y).sum().backward()
|
137 |
+
t[2] = time_sync()
|
138 |
+
except Exception as e: # no backward method
|
139 |
+
print(e)
|
140 |
+
t[2] = float('nan')
|
141 |
+
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
|
142 |
+
tb += (t[2] - t[1]) * 1000 / n # ms per op backward
|
143 |
+
mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
|
144 |
+
s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
|
145 |
+
s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
|
146 |
+
p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
|
147 |
+
print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
|
148 |
+
results.append([p, flops, mem, tf, tb, s_in, s_out])
|
149 |
+
except Exception as e:
|
150 |
+
print(e)
|
151 |
+
results.append(None)
|
152 |
+
torch.cuda.empty_cache()
|
153 |
+
return results
|
154 |
+
|
155 |
+
|
156 |
+
def is_parallel(model):
|
157 |
+
# Returns True if model is of type DP or DDP
|
158 |
+
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
159 |
+
|
160 |
+
|
161 |
+
def de_parallel(model):
|
162 |
+
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP
|
163 |
+
return model.module if is_parallel(model) else model
|
164 |
+
|
165 |
+
|
166 |
+
def intersect_dicts(da, db, exclude=()):
|
167 |
+
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
168 |
+
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
|
169 |
+
|
170 |
+
|
171 |
+
def initialize_weights(model):
|
172 |
+
for m in model.modules():
|
173 |
+
t = type(m)
|
174 |
+
if t is nn.Conv2d:
|
175 |
+
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
176 |
+
elif t is nn.BatchNorm2d:
|
177 |
+
m.eps = 1e-3
|
178 |
+
m.momentum = 0.03
|
179 |
+
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
|
180 |
+
m.inplace = True
|
181 |
+
|
182 |
+
|
183 |
+
def find_modules(model, mclass=nn.Conv2d):
|
184 |
+
# Finds layer indices matching module class 'mclass'
|
185 |
+
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
|
186 |
+
|
187 |
+
|
188 |
+
def sparsity(model):
|
189 |
+
# Return global model sparsity
|
190 |
+
a, b = 0., 0.
|
191 |
+
for p in model.parameters():
|
192 |
+
a += p.numel()
|
193 |
+
b += (p == 0).sum()
|
194 |
+
return b / a
|
195 |
+
|
196 |
+
|
197 |
+
def prune(model, amount=0.3):
|
198 |
+
# Prune model to requested global sparsity
|
199 |
+
import torch.nn.utils.prune as prune
|
200 |
+
print('Pruning model... ', end='')
|
201 |
+
for name, m in model.named_modules():
|
202 |
+
if isinstance(m, nn.Conv2d):
|
203 |
+
prune.l1_unstructured(m, name='weight', amount=amount) # prune
|
204 |
+
prune.remove(m, 'weight') # make permanent
|
205 |
+
print(' %.3g global sparsity' % sparsity(model))
|
206 |
+
|
207 |
+
|
208 |
+
def fuse_conv_and_bn(conv, bn):
|
209 |
+
# Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
210 |
+
fusedconv = nn.Conv2d(conv.in_channels,
|
211 |
+
conv.out_channels,
|
212 |
+
kernel_size=conv.kernel_size,
|
213 |
+
stride=conv.stride,
|
214 |
+
padding=conv.padding,
|
215 |
+
groups=conv.groups,
|
216 |
+
bias=True).requires_grad_(False).to(conv.weight.device)
|
217 |
+
|
218 |
+
# prepare filters
|
219 |
+
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
220 |
+
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
221 |
+
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
|
222 |
+
|
223 |
+
# prepare spatial bias
|
224 |
+
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
225 |
+
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
226 |
+
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
227 |
+
|
228 |
+
return fusedconv
|
229 |
+
|
230 |
+
|
231 |
+
def model_info(model, verbose=False, img_size=640):
|
232 |
+
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
|
233 |
+
n_p = sum(x.numel() for x in model.parameters()) # number parameters
|
234 |
+
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
|
235 |
+
if verbose:
|
236 |
+
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
|
237 |
+
for i, (name, p) in enumerate(model.named_parameters()):
|
238 |
+
name = name.replace('module_list.', '')
|
239 |
+
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
|
240 |
+
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
|
241 |
+
|
242 |
+
try: # FLOPs
|
243 |
+
from thop import profile
|
244 |
+
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
|
245 |
+
img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
|
246 |
+
flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs
|
247 |
+
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
|
248 |
+
fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPs
|
249 |
+
except (ImportError, Exception):
|
250 |
+
fs = ''
|
251 |
+
|
252 |
+
LOGGER.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
|
253 |
+
|
254 |
+
|
255 |
+
def load_classifier(name='resnet101', n=2):
|
256 |
+
# Loads a pretrained model reshaped to n-class output
|
257 |
+
model = torchvision.models.__dict__[name](pretrained=True)
|
258 |
+
|
259 |
+
# ResNet model properties
|
260 |
+
# input_size = [3, 224, 224]
|
261 |
+
# input_space = 'RGB'
|
262 |
+
# input_range = [0, 1]
|
263 |
+
# mean = [0.485, 0.456, 0.406]
|
264 |
+
# std = [0.229, 0.224, 0.225]
|
265 |
+
|
266 |
+
# Reshape output to n classes
|
267 |
+
filters = model.fc.weight.shape[1]
|
268 |
+
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
|
269 |
+
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
|
270 |
+
model.fc.out_features = n
|
271 |
+
return model
|
272 |
+
|
273 |
+
|
274 |
+
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
|
275 |
+
# scales img(bs,3,y,x) by ratio constrained to gs-multiple
|
276 |
+
if ratio == 1.0:
|
277 |
+
return img
|
278 |
+
else:
|
279 |
+
h, w = img.shape[2:]
|
280 |
+
s = (int(h * ratio), int(w * ratio)) # new size
|
281 |
+
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
|
282 |
+
if not same_shape: # pad/crop img
|
283 |
+
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
|
284 |
+
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
285 |
+
|
286 |
+
|
287 |
+
def copy_attr(a, b, include=(), exclude=()):
|
288 |
+
# Copy attributes from b to a, options to only include [...] and to exclude [...]
|
289 |
+
for k, v in b.__dict__.items():
|
290 |
+
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
|
291 |
+
continue
|
292 |
+
else:
|
293 |
+
setattr(a, k, v)
|
294 |
+
|
295 |
+
|
296 |
+
class EarlyStopping:
|
297 |
+
# YOLOv5 simple early stopper
|
298 |
+
def __init__(self, patience=30):
|
299 |
+
self.best_fitness = 0.0 # i.e. mAP
|
300 |
+
self.best_epoch = 0
|
301 |
+
self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop
|
302 |
+
self.possible_stop = False # possible stop may occur next epoch
|
303 |
+
|
304 |
+
def __call__(self, epoch, fitness):
|
305 |
+
if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
|
306 |
+
self.best_epoch = epoch
|
307 |
+
self.best_fitness = fitness
|
308 |
+
delta = epoch - self.best_epoch # epochs without improvement
|
309 |
+
self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
|
310 |
+
stop = delta >= self.patience # stop training if patience exceeded
|
311 |
+
if stop:
|
312 |
+
LOGGER.info(f'EarlyStopping patience {self.patience} exceeded, stopping training.')
|
313 |
+
return stop
|
314 |
+
|
315 |
+
|
316 |
+
class ModelEMA:
|
317 |
+
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
|
318 |
+
Keep a moving average of everything in the model state_dict (parameters and buffers).
|
319 |
+
This is intended to allow functionality like
|
320 |
+
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
321 |
+
A smoothed version of the weights is necessary for some training schemes to perform well.
|
322 |
+
This class is sensitive where it is initialized in the sequence of model init,
|
323 |
+
GPU assignment and distributed training wrappers.
|
324 |
+
"""
|
325 |
+
|
326 |
+
def __init__(self, model, decay=0.9999, updates=0):
|
327 |
+
# Create EMA
|
328 |
+
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
|
329 |
+
# if next(model.parameters()).device.type != 'cpu':
|
330 |
+
# self.ema.half() # FP16 EMA
|
331 |
+
self.updates = updates # number of EMA updates
|
332 |
+
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
|
333 |
+
for p in self.ema.parameters():
|
334 |
+
p.requires_grad_(False)
|
335 |
+
|
336 |
+
def update(self, model):
|
337 |
+
# Update EMA parameters
|
338 |
+
with torch.no_grad():
|
339 |
+
self.updates += 1
|
340 |
+
d = self.decay(self.updates)
|
341 |
+
|
342 |
+
msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
|
343 |
+
for k, v in self.ema.state_dict().items():
|
344 |
+
if v.dtype.is_floating_point:
|
345 |
+
v *= d
|
346 |
+
v += (1. - d) * msd[k].detach()
|
347 |
+
|
348 |
+
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
|
349 |
+
# Update EMA attributes
|
350 |
+
copy_attr(self.ema, model, include, exclude)
|
val.py
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os, os.path as osp
|
4 |
+
import sys
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
FILE = Path(__file__).absolute()
|
12 |
+
sys.path.append(FILE.parents[0].as_posix()) # add kapao/ to path
|
13 |
+
|
14 |
+
from models.experimental import attempt_load
|
15 |
+
from utils.datasets import create_dataloader
|
16 |
+
from utils.augmentations import letterbox
|
17 |
+
from utils.general import check_dataset, check_file, check_img_size, \
|
18 |
+
non_max_suppression_kp, scale_coords, set_logging, colorstr
|
19 |
+
from utils.torch_utils import select_device, time_sync
|
20 |
+
import tempfile
|
21 |
+
import cv2
|
22 |
+
|
23 |
+
PAD_COLOR = (114 / 255, 114 / 255, 114 / 255)
|
24 |
+
|
25 |
+
|
26 |
+
def run_nms(data, model_out):
|
27 |
+
if data['iou_thres'] == data['iou_thres_kp'] and data['conf_thres_kp'] >= data['conf_thres']:
|
28 |
+
# Combined NMS saves ~0.2 ms / image
|
29 |
+
dets = non_max_suppression_kp(model_out, data['conf_thres'], data['iou_thres'], num_coords=data['num_coords'])
|
30 |
+
person_dets = [d[d[:, 5] == 0] for d in dets]
|
31 |
+
kp_dets = [d[d[:, 4] >= data['conf_thres_kp']] for d in dets]
|
32 |
+
kp_dets = [d[d[:, 5] > 0] for d in kp_dets]
|
33 |
+
else:
|
34 |
+
person_dets = non_max_suppression_kp(model_out, data['conf_thres'], data['iou_thres'],
|
35 |
+
classes=[0],
|
36 |
+
num_coords=data['num_coords'])
|
37 |
+
|
38 |
+
kp_dets = non_max_suppression_kp(model_out, data['conf_thres_kp'], data['iou_thres_kp'],
|
39 |
+
classes=list(range(1, 1 + len(data['kp_flip']))),
|
40 |
+
num_coords=data['num_coords'])
|
41 |
+
return person_dets, kp_dets
|
42 |
+
|
43 |
+
|
44 |
+
def post_process_batch(data, imgs, paths, shapes, person_dets, kp_dets,
|
45 |
+
two_stage=False, pad=0, device='cpu', model=None, origins=None):
|
46 |
+
|
47 |
+
batch_bboxes, batch_poses, batch_scores, batch_ids = [], [], [], []
|
48 |
+
n_fused = np.zeros(data['num_coords'] // 2)
|
49 |
+
|
50 |
+
if origins is None: # used only for two-stage inference so set to 0 if None
|
51 |
+
origins = [np.array([0, 0, 0]) for _ in range(len(person_dets))]
|
52 |
+
|
53 |
+
# process each image in batch
|
54 |
+
for si, (pd, kpd, origin) in enumerate(zip(person_dets, kp_dets, origins)):
|
55 |
+
nd = pd.shape[0]
|
56 |
+
nkp = kpd.shape[0]
|
57 |
+
|
58 |
+
if nd:
|
59 |
+
path, shape = Path(paths[si]) if len(paths) else '', shapes[si][0]
|
60 |
+
img_id = int(osp.splitext(osp.split(path)[-1])[0]) if path else si
|
61 |
+
|
62 |
+
# TWO-STAGE INFERENCE (EXPERIMENTAL)
|
63 |
+
if two_stage:
|
64 |
+
gs = max(int(model.stride.max()), 32) # grid size (max stride)
|
65 |
+
crops, origins, crop_shapes = [], [], []
|
66 |
+
|
67 |
+
for bbox in pd[:, :4].cpu().numpy():
|
68 |
+
x1, y1, x2, y2 = map(int, map(round, bbox))
|
69 |
+
x1, x2 = max(x1, 0), min(x2, data['imgsz'])
|
70 |
+
y1, y2 = max(y1, 0), min(y2, data['imgsz'])
|
71 |
+
h0, w0 = y2 - y1, x2 - x1
|
72 |
+
crop_shapes.append([(h0, w0)])
|
73 |
+
crop = np.transpose(imgs[si][:, y1:y2, x1:x2].cpu().numpy(), (1, 2, 0))
|
74 |
+
crop = cv2.copyMakeBorder(crop, pad, pad, pad, pad, cv2.BORDER_CONSTANT, value=PAD_COLOR) # add padding
|
75 |
+
h0 += 2 * pad
|
76 |
+
w0 += 2 * pad
|
77 |
+
origins = [np.array([x1 - pad, y1 - pad, 0])]
|
78 |
+
crop_pre = letterbox(crop, data['imgsz'], color=PAD_COLOR, stride=gs, auto=False)[0]
|
79 |
+
crop_input = torch.Tensor(np.transpose(np.expand_dims(crop_pre, axis=0), (0, 3, 1, 2))).to(device)
|
80 |
+
|
81 |
+
out = model(crop_input, augment=True, kp_flip=data['kp_flip'], scales=data['scales'], flips=data['flips'])[0]
|
82 |
+
person_dets, kp_dets = run_nms(data, out)
|
83 |
+
_, poses, scores, img_ids, _ = post_process_batch(
|
84 |
+
data, crop_input, paths, [[(h0, w0)]], person_dets, kp_dets, device=device, origins=origins)
|
85 |
+
|
86 |
+
# map back to original image
|
87 |
+
if len(poses):
|
88 |
+
poses = np.stack(poses, axis=0)
|
89 |
+
poses = poses[:, :, :2].reshape(poses.shape[0], -1)
|
90 |
+
poses = scale_coords(imgs[si].shape[1:], poses, shape)
|
91 |
+
poses = poses.reshape(poses.shape[0], data['num_coords'] // 2, 2)
|
92 |
+
poses = np.concatenate((poses, np.zeros((poses.shape[0], data['num_coords'] // 2, 1))), axis=-1)
|
93 |
+
poses = [p for p in poses] # convert back to list
|
94 |
+
|
95 |
+
# SINGLE-STAGE INFERENCE
|
96 |
+
else:
|
97 |
+
scores = pd[:, 4].cpu().numpy() # person detection score
|
98 |
+
bboxes = scale_coords(imgs[si].shape[1:], pd[:, :4], shape).round().cpu().numpy()
|
99 |
+
poses = scale_coords(imgs[si].shape[1:], pd[:, -data['num_coords']:], shape).cpu().numpy()
|
100 |
+
poses = poses.reshape((nd, -data['num_coords'], 2))
|
101 |
+
poses = np.concatenate((poses, np.zeros((nd, poses.shape[1], 1))), axis=-1)
|
102 |
+
|
103 |
+
if data['use_kp_dets'] and nkp:
|
104 |
+
mask = scores > data['conf_thres_kp_person']
|
105 |
+
poses_mask = poses[mask]
|
106 |
+
|
107 |
+
if len(poses_mask):
|
108 |
+
kpd[:, :4] = scale_coords(imgs[si].shape[1:], kpd[:, :4], shape)
|
109 |
+
kpd = kpd[:, :6].cpu()
|
110 |
+
|
111 |
+
for x1, y1, x2, y2, conf, cls in kpd:
|
112 |
+
x, y = np.mean((x1, x2)), np.mean((y1, y2))
|
113 |
+
pose_kps = poses_mask[:, int(cls - 1)]
|
114 |
+
dist = np.linalg.norm(pose_kps[:, :2] - np.array([[x, y]]), axis=-1)
|
115 |
+
kp_match = np.argmin(dist)
|
116 |
+
if conf > pose_kps[kp_match, 2] and dist[kp_match] < data['overwrite_tol']:
|
117 |
+
pose_kps[kp_match] = [x, y, conf]
|
118 |
+
n_fused[int(cls - 1)] += 1
|
119 |
+
poses[mask] = poses_mask
|
120 |
+
|
121 |
+
poses = [p + origin for p in poses]
|
122 |
+
|
123 |
+
batch_bboxes.extend(bboxes)
|
124 |
+
batch_poses.extend(poses)
|
125 |
+
batch_scores.extend(scores)
|
126 |
+
batch_ids.extend([img_id] * len(scores))
|
127 |
+
|
128 |
+
return batch_bboxes, batch_poses, batch_scores, batch_ids, n_fused
|
129 |
+
|
130 |
+
|
131 |
+
@torch.no_grad()
|
132 |
+
def run(data,
|
133 |
+
weights=None, # model.pt path(s)
|
134 |
+
batch_size=16, # batch size
|
135 |
+
imgsz=1280, # inference size (pixels)
|
136 |
+
task='val', # train, val, test, speed or study
|
137 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
138 |
+
conf_thres=0.001, # confidence threshold
|
139 |
+
iou_thres=0.65, # NMS IoU threshold
|
140 |
+
no_kp_dets=False,
|
141 |
+
conf_thres_kp=0.2,
|
142 |
+
iou_thres_kp=0.25,
|
143 |
+
conf_thres_kp_person=0.3,
|
144 |
+
overwrite_tol=50, # pixels for kp det overwrite
|
145 |
+
scales=[1],
|
146 |
+
flips=[None],
|
147 |
+
rect=False,
|
148 |
+
half=True, # use FP16 half-precision inference
|
149 |
+
model=None,
|
150 |
+
dataloader=None,
|
151 |
+
compute_loss=None,
|
152 |
+
two_stage=False,
|
153 |
+
pad=0
|
154 |
+
):
|
155 |
+
|
156 |
+
if two_stage:
|
157 |
+
assert batch_size == 1, 'Batch size must be set to 1 for two-stage processing'
|
158 |
+
assert conf_thres >= 0.01, 'Confidence threshold must be >= 0.01 for two-stage processing'
|
159 |
+
assert not rect, 'Cannot use rectangular inference with two-stage processing'
|
160 |
+
assert not half, 'Two-stage processing must use full precision'
|
161 |
+
|
162 |
+
use_kp_dets = not no_kp_dets
|
163 |
+
|
164 |
+
# Initialize/load model and set device
|
165 |
+
training = model is not None
|
166 |
+
if training: # called by train.py
|
167 |
+
device = next(model.parameters()).device # get model device
|
168 |
+
else: # called directly
|
169 |
+
device = select_device(device, batch_size=batch_size)
|
170 |
+
|
171 |
+
# Load model
|
172 |
+
model = attempt_load(weights, map_location=device) # load FP32 model
|
173 |
+
gs = max(int(model.stride.max()), 32) # grid size (max stride)
|
174 |
+
imgsz = check_img_size(imgsz, s=gs) # check image size
|
175 |
+
|
176 |
+
# Data
|
177 |
+
data = check_dataset(data) # check
|
178 |
+
|
179 |
+
# add inference settings to data dict
|
180 |
+
data['imgsz'] = imgsz
|
181 |
+
data['conf_thres'] = conf_thres
|
182 |
+
data['iou_thres'] = iou_thres
|
183 |
+
data['use_kp_dets'] = use_kp_dets
|
184 |
+
data['conf_thres_kp'] = conf_thres_kp
|
185 |
+
data['iou_thres_kp'] = iou_thres_kp
|
186 |
+
data['conf_thres_kp_person'] = conf_thres_kp_person
|
187 |
+
data['overwrite_tol'] = overwrite_tol
|
188 |
+
data['scales'] = scales
|
189 |
+
data['flips'] = flips
|
190 |
+
|
191 |
+
is_coco = 'coco' in data['path']
|
192 |
+
if is_coco:
|
193 |
+
from pycocotools.coco import COCO
|
194 |
+
from pycocotools.cocoeval import COCOeval
|
195 |
+
else:
|
196 |
+
from crowdposetools.coco import COCO
|
197 |
+
from crowdposetools.cocoeval import COCOeval
|
198 |
+
|
199 |
+
# Half
|
200 |
+
half &= device.type != 'cpu' # half precision only supported on CUDA
|
201 |
+
if half:
|
202 |
+
model.half()
|
203 |
+
|
204 |
+
model.eval()
|
205 |
+
nc = int(data['nc']) # number of classes
|
206 |
+
|
207 |
+
# Dataloader
|
208 |
+
if not training:
|
209 |
+
if device.type != 'cpu':
|
210 |
+
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
211 |
+
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
|
212 |
+
dataloader = create_dataloader(data[task], data['labels'], imgsz, batch_size, gs, rect=rect,
|
213 |
+
prefix=colorstr(f'{task}: '), kp_flip=data['kp_flip'])[0]
|
214 |
+
|
215 |
+
seen = 0
|
216 |
+
mp, mr, map50, mAP, t0, t1, t2 = 0., 0., 0., 0., 0., 0., 0.
|
217 |
+
loss = torch.zeros(4, device=device)
|
218 |
+
json_dump = []
|
219 |
+
n_fused = np.zeros(data['num_coords'] // 2)
|
220 |
+
|
221 |
+
for batch_i, (imgs, targets, paths, shapes) in enumerate(tqdm(dataloader, desc='Processing {} images'.format(task))):
|
222 |
+
t_ = time_sync()
|
223 |
+
imgs = imgs.to(device, non_blocking=True)
|
224 |
+
imgs = imgs.half() if half else imgs.float() # uint8 to fp16/32
|
225 |
+
imgs /= 255.0 # 0 - 255 to 0.0 - 1.0
|
226 |
+
targets = targets.to(device)
|
227 |
+
nb, _, height, width = imgs.shape # batch size, channels, height, width
|
228 |
+
t = time_sync()
|
229 |
+
t0 += t - t_
|
230 |
+
|
231 |
+
# Run model
|
232 |
+
out, train_out = model(imgs, augment=True, kp_flip=data['kp_flip'], scales=data['scales'], flips=data['flips'])
|
233 |
+
t1 += time_sync() - t
|
234 |
+
|
235 |
+
# Compute loss
|
236 |
+
if train_out: # only computed if no scale / flipping
|
237 |
+
if compute_loss:
|
238 |
+
loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls, kp
|
239 |
+
|
240 |
+
t = time_sync()
|
241 |
+
|
242 |
+
# NMS
|
243 |
+
person_dets, kp_dets = run_nms(data, out)
|
244 |
+
|
245 |
+
# Fuse keypoint and pose detections
|
246 |
+
_, poses, scores, img_ids, n_fused_batch = post_process_batch(
|
247 |
+
data, imgs, paths, shapes, person_dets, kp_dets, two_stage, pad, device, model)
|
248 |
+
|
249 |
+
t2 += time_sync() - t
|
250 |
+
seen += len(imgs)
|
251 |
+
n_fused += n_fused_batch
|
252 |
+
|
253 |
+
for i, (pose, score, img_id) in enumerate(zip(poses, scores, img_ids)):
|
254 |
+
json_dump.append({
|
255 |
+
'image_id': img_id,
|
256 |
+
'category_id': 1,
|
257 |
+
'keypoints': pose.reshape(-1).tolist(),
|
258 |
+
'score': float(score) # person score
|
259 |
+
})
|
260 |
+
|
261 |
+
if not training: # save json
|
262 |
+
save_dir, weights_name = osp.split(weights)
|
263 |
+
json_name = '{}_{}_c{}_i{}_ck{}_ik{}_ckp{}_t{}.json'.format(
|
264 |
+
task, osp.splitext(weights_name)[0],
|
265 |
+
conf_thres, iou_thres, conf_thres_kp, iou_thres_kp,
|
266 |
+
conf_thres_kp_person, overwrite_tol
|
267 |
+
)
|
268 |
+
json_path = osp.join(save_dir, json_name)
|
269 |
+
else:
|
270 |
+
tmp = tempfile.NamedTemporaryFile(mode='w+b')
|
271 |
+
json_path = tmp.name
|
272 |
+
|
273 |
+
with open(json_path, 'w') as f:
|
274 |
+
json.dump(json_dump, f)
|
275 |
+
|
276 |
+
if task in ('train', 'val'):
|
277 |
+
annot = osp.join(data['path'], data['{}_annotations'.format(task)])
|
278 |
+
coco = COCO(annot)
|
279 |
+
result = coco.loadRes(json_path)
|
280 |
+
eval = COCOeval(coco, result, iouType='keypoints')
|
281 |
+
eval.evaluate()
|
282 |
+
eval.accumulate()
|
283 |
+
eval.summarize()
|
284 |
+
mAP, map50 = eval.stats[:2]
|
285 |
+
|
286 |
+
if training:
|
287 |
+
tmp.close()
|
288 |
+
|
289 |
+
# Print speeds
|
290 |
+
t = tuple(x / seen * 1E3 for x in (t0, t1, t2)) # speeds per image
|
291 |
+
if not training and task != 'test':
|
292 |
+
os.rename(json_path, osp.splitext(json_path)[0] + '_ap{:.4f}.json'.format(mAP))
|
293 |
+
shape = (batch_size, 3, imgsz, imgsz)
|
294 |
+
print(f'Speed: %.3fms pre-process, %.3fms inference, %.3fms NMS per image at shape {shape}' % t)
|
295 |
+
print('Keypoint Objects Fused:', n_fused)
|
296 |
+
model.float() # for training
|
297 |
+
return (mp, mr, map50, mAP, *(loss.cpu() / len(dataloader)).tolist()), np.zeros(nc), t # for compatibility with train
|
298 |
+
|
299 |
+
|
300 |
+
def parse_opt():
|
301 |
+
parser = argparse.ArgumentParser(prog='val.py')
|
302 |
+
parser.add_argument('--data', type=str, default='data/coco-kp.yaml', help='dataset.yaml path')
|
303 |
+
parser.add_argument('--weights', default='kapao_s_coco.pt')
|
304 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
305 |
+
parser.add_argument('--imgsz', type=int, default=1280, help='inference size (pixels)')
|
306 |
+
parser.add_argument('--task', default='val', help='train, val, test')
|
307 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
308 |
+
parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
|
309 |
+
parser.add_argument('--iou-thres', type=float, default=0.65, help='NMS IoU threshold')
|
310 |
+
parser.add_argument('--no-kp-dets', action='store_true', help='do not use keypoint objects')
|
311 |
+
parser.add_argument('--conf-thres-kp', type=float, default=0.2)
|
312 |
+
parser.add_argument('--conf-thres-kp-person', type=float, default=0.3)
|
313 |
+
parser.add_argument('--iou-thres-kp', type=float, default=0.25)
|
314 |
+
parser.add_argument('--overwrite-tol', type=int, default=50)
|
315 |
+
parser.add_argument('--scales', type=float, nargs='+', default=[1])
|
316 |
+
parser.add_argument('--flips', type=int, nargs='+', default=[-1])
|
317 |
+
parser.add_argument('--rect', action='store_true', help='rectangular input image')
|
318 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
319 |
+
parser.add_argument('--two-stage', action='store_true', help='use two-stage inference (experimental)')
|
320 |
+
parser.add_argument('--pad', type=int, default=0, help='padding for two-stage inference')
|
321 |
+
opt = parser.parse_args()
|
322 |
+
opt.flips = [None if f == -1 else f for f in opt.flips]
|
323 |
+
opt.data = check_file(opt.data) # check file
|
324 |
+
return opt
|
325 |
+
|
326 |
+
|
327 |
+
def main(opt):
|
328 |
+
set_logging()
|
329 |
+
print(colorstr('val: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
|
330 |
+
if opt.task in ('train', 'val', 'test'): # run normally
|
331 |
+
run(**vars(opt))
|
332 |
+
|
333 |
+
|
334 |
+
if __name__ == "__main__":
|
335 |
+
opt = parse_opt()
|
336 |
+
main(opt)
|