from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch # Load CodeT5 or similar model model_name = "Salesforce/codet5-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) def fix_code(code: str) -> str: input_text = f"fix: {code}" inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512) with torch.no_grad(): output = model.generate(**inputs, max_length=512) return tokenizer.decode(output[0], skip_special_tokens=True)