import gradio as gr from bug_detector import fix_code def run_bugfixer(code): return fix_code(code) gr.Interface( fn=run_bugfixer, inputs=gr.Textbox(label="Paste Buggy Code", lines=15), outputs=gr.Textbox(label="Suggested Fixed Code"), title="Code Fixer using CodeT5+" ).launch() from flask import Flask, request, jsonify from flask_cors import CORS # Fix CORS issue import torch from transformers import RobertaTokenizer, RobertaForSequenceClassification app = Flask(__name__) CORS(app) # Enable CORS # Load CodeBERT model tokenizer = RobertaTokenizer.from_pretrained("microsoft/codebert-base") model = RobertaForSequenceClassification.from_pretrained("microsoft/codebert-base") @app.route("/") def home(): return "Bug Detection and Fixing API is running!" @app.route("/detect", methods=["POST"]) def detect_bug(): try: data = request.get_json() code = data.get("code", "") if not code: return jsonify({"error": "No code provided"}), 400 # Tokenize and classify inputs = tokenizer(code, return_tensors="pt", truncation=True, padding=True) outputs = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"]) prediction = torch.argmax(outputs.logits, dim=1).item() bug_status = "buggy" if prediction == 1 else "clean" return jsonify({"status": bug_status}) except Exception as e: return jsonify({"error": str(e)}), 500 # Handle errors properly if __name__ == "__main__": app.run(host="0.0.0.0", port=5000) # Ensure compatibility with Docker