import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer # Load pre-trained CodeBERT model model = AutoModelForSequenceClassification.from_pretrained("microsoft/codebert-base", num_labels=2) tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base") def classify_code(code): inputs = tokenizer(code, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) return "buggy" if probabilities[0][1] > probabilities[0][0] else "correct" # Test example if __name__ == "__main__": test_code = "def add(a, b): return a * b" # Buggy function print(classify_code(test_code))