import gradio as gr import torch from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, EulerAncestralDiscreteScheduler from PIL import Image, PngImagePlugin, ImageFilter from datetime import datetime import os import gc import time import spaces from typing import Optional, Tuple, Dict, Any from huggingface_hub import hf_hub_download import tempfile import random import logging import torch.nn.functional as F from transformers import CLIPProcessor, CLIPModel # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Constants MODEL_REPO = "ajsbsd/CyberRealistic-Pony" MODEL_FILENAME = "cyberrealisticPony_v110.safetensors" NSFW_MODEL_ID = "openai/clip-vit-base-patch32" # CLIP model for NSFW detection MAX_SEED = 2**32 - 1 DEVICE = "cuda" if torch.cuda.is_available() else "cpu" DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32 NSFW_THRESHOLD = 0.25 # Threshold for NSFW detection # Global pipeline state class PipelineManager: def __init__(self): self.txt2img_pipe = None self.img2img_pipe = None self.nsfw_detector_model = None self.nsfw_detector_processor = None self.model_loaded = False self.nsfw_detector_loaded = False def clear_memory(self): """Aggressive memory cleanup to free up GPU/CPU memory.""" if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.synchronize() gc.collect() def load_nsfw_detector(self) -> bool: """Load NSFW detection model (CLIP) with error handling.""" if self.nsfw_detector_loaded: return True try: logger.info("Loading NSFW detector...") self.nsfw_detector_processor = CLIPProcessor.from_pretrained(NSFW_MODEL_ID) # Add use_safetensors=True to the CLIPModel.from_pretrained call self.nsfw_detector_model = CLIPModel.from_pretrained(NSFW_MODEL_ID, use_safetensors=True) if DEVICE == "cuda": self.nsfw_detector_model = self.nsfw_detector_model.to(DEVICE) self.nsfw_detector_loaded = True logger.info("NSFW detector loaded successfully!") return True except Exception as e: logger.error(f"Failed to load NSFW detector: {e}") self.nsfw_detector_loaded = False return False def is_nsfw(self, image: Image.Image, prompt: str = "") -> Tuple[bool, float]: """ Detects NSFW content using CLIP-based zero-shot classification. Falls back to prompt-based detection if CLIP model fails or is not loaded. """ try: # Load NSFW detector if not already loaded if not self.nsfw_detector_loaded: if not self.load_nsfw_detector(): # If NSFW detector cannot be loaded, fall back to prompt-based return self._fallback_nsfw_detection(prompt) # CLIP-based NSFW detection inputs = self.nsfw_detector_processor(images=image, return_tensors="pt").to(DEVICE) with torch.no_grad(): image_features = self.nsfw_detector_model.get_image_features(**inputs) # Define text prompts for classification safe_prompts = [ "a safe family-friendly image", "a general photo", "appropriate content", "artistic photography" ] unsafe_prompts = [ "explicit adult content", "nudity", "inappropriate sexual content", "pornographic material" ] # Get text features safe_inputs = self.nsfw_detector_processor( text=safe_prompts, return_tensors="pt", padding=True ).to(DEVICE) unsafe_inputs = self.nsfw_detector_processor( text=unsafe_prompts, return_tensors="pt", padding=True ).to(DEVICE) safe_features = self.nsfw_detector_model.get_text_features(**safe_inputs) unsafe_features = self.nsfw_detector_model.get_text_features(**unsafe_inputs) # Normalize features for cosine similarity image_features = F.normalize(image_features, p=2, dim=-1) safe_features = F.normalize(safe_features, p=2, dim=-1) unsafe_features = F.normalize(unsafe_features, p=2, dim=-1) # Calculate similarities safe_similarity = (image_features @ safe_features.T).mean().item() unsafe_similarity = (image_features @ unsafe_features.T).mean().item() # Classification logic is_nsfw_result = ( unsafe_similarity > safe_similarity and unsafe_similarity > NSFW_THRESHOLD ) confidence = unsafe_similarity if is_nsfw_result else safe_similarity if is_nsfw_result: logger.warning(f"🚨 NSFW content detected (CLIP-based: {unsafe_similarity:.3f} > {safe_similarity:.3f})") return is_nsfw_result, confidence except Exception as e: logger.error(f"NSFW detection error (CLIP model failed): {e}") # Fallback to prompt-based detection if CLIP model encounters an error return self._fallback_nsfw_detection(prompt) def _fallback_nsfw_detection(self, prompt: str = "") -> Tuple[bool, float]: """Fallback NSFW detection based on prompt keyword analysis.""" nsfw_keywords = [ 'nude', 'naked', 'nsfw', 'explicit', 'sexual', 'erotic', 'porn', 'adult', 'xxx', 'sex', 'breast', 'nipple', 'genital', 'provocative' ] prompt_lower = prompt.lower() for keyword in nsfw_keywords: if keyword in prompt_lower: logger.warning(f"🚨 NSFW content detected (prompt-based: '{keyword}' found)") return True, random.uniform(0.7, 0.95) # Random chance for demonstration (consider removing in production) if random.random() < 0.02: # 2% chance for demo logger.warning("🚨 NSFW content detected (random demo detection)") return True, random.uniform(0.6, 0.8) return False, random.uniform(0.1, 0.3) def load_models(self) -> bool: """Load Stable Diffusion XL models (txt2img and img2img) with enhanced error handling and memory optimization.""" if self.model_loaded: return True try: logger.info("Loading CyberRealistic Pony models...") # Download model with better error handling model_path = hf_hub_download( repo_id=MODEL_REPO, filename=MODEL_FILENAME, cache_dir=os.environ.get("HF_CACHE_DIR", "/tmp/hf_cache"), resume_download=True ) logger.info(f"Model downloaded to: {model_path}") # Load txt2img pipeline with optimizations self.txt2img_pipe = StableDiffusionXLPipeline.from_single_file( model_path, torch_dtype=DTYPE, use_safetensors=True, variant="fp16" if DEVICE == "cuda" else None, safety_checker=None, # Disable for faster loading, using custom NSFW check requires_safety_checker=False ) # Apply memory optimizations to txt2img pipeline self._optimize_pipeline(self.txt2img_pipe) # Create img2img pipeline sharing components self.img2img_pipe = StableDiffusionXLImg2ImgPipeline( vae=self.txt2img_pipe.vae, text_encoder=self.txt2img_pipe.text_encoder, text_encoder_2=self.txt2img_pipe.text_encoder_2, tokenizer=self.txt2img_pipe.tokenizer, tokenizer_2=self.txt2img_pipe.tokenizer_2, unet=self.txt2img_pipe.unet, scheduler=self.txt2img_pipe.scheduler, # Removed safety_checker and requires_safety_checker as they are not valid for this constructor ) # Apply memory optimizations to img2img pipeline self._optimize_pipeline(self.img2img_pipe) self.model_loaded = True logger.info("Models loaded successfully!") return True except Exception as e: logger.error(f"Failed to load models: {e}") self.model_loaded = False return False def _optimize_pipeline(self, pipeline): """Apply memory optimizations to a given diffusion pipeline.""" pipeline.enable_attention_slicing() pipeline.enable_vae_slicing() if DEVICE == "cuda": # Use sequential CPU offloading for better memory management on GPU pipeline.enable_sequential_cpu_offload() # Enable memory efficient attention if xformers is available try: pipeline.enable_xformers_memory_efficient_attention() except Exception: # Catch any error if xformers is not installed/configured logger.info("xformers not available, using default attention") else: # Move pipeline to CPU if CUDA is not available pipeline = pipeline.to(DEVICE) # Global pipeline manager instance pipe_manager = PipelineManager() # Enhanced prompt templates QUALITY_TAGS = "score_9, score_8_up, score_7_up, masterpiece, best quality, ultra detailed, 8k" DEFAULT_NEGATIVE = """(worst quality:1.4), (low quality:1.4), (normal quality:1.2), lowres, bad anatomy, bad hands, signature, watermarks, ugly, imperfect eyes, skewed eyes, unnatural face, unnatural body, error, extra limb, missing limbs, painting by bad-artist, 3d, render""" EXAMPLE_PROMPTS = [ "beautiful anime girl with long flowing silver hair, sakura petals, soft morning light", "cyberpunk street scene, neon lights reflecting on wet pavement, futuristic cityscape", "majestic dragon soaring through storm clouds, lightning, epic fantasy scene", "cute anthropomorphic fox girl, fluffy tail, forest clearing, magical sparkles", "elegant Victorian lady in ornate dress, portrait, vintage photography style", "futuristic mech suit, glowing energy core, sci-fi laboratory background", "mystical unicorn with rainbow mane, enchanted forest, ethereal atmosphere", "steampunk inventor's workshop, brass gears, mechanical contraptions, warm lighting" ] def enhance_prompt(prompt: str, add_quality: bool = True) -> str: """ Enhances the given prompt with quality tags unless they are already present. """ if not prompt.strip(): return "" # Don't add quality tags if they're already present in the prompt (case-insensitive) if any(tag in prompt.lower() for tag in ["score_", "masterpiece", "best quality"]): return prompt if add_quality: return f"{QUALITY_TAGS}, {prompt}" return prompt def validate_and_fix_dimensions(width: int, height: int) -> Tuple[int, int]: """ Ensures SDXL-compatible dimensions (multiples of 64) and reasonable aspect ratios. Clamps dimensions between 512 and 1024. """ # Round to nearest multiple of 64 width = max(512, min(1024, ((width + 31) // 64) * 64)) height = max(512, min(1024, ((height + 31) // 64) * 64)) # Ensure reasonable aspect ratios (prevent extremely wide/tall images) aspect_ratio = width / height if aspect_ratio > 2.0: # Too wide, adjust height height = width // 2 elif aspect_ratio < 0.5: # Too tall, adjust width width = height // 2 return width, height def create_metadata_png(image: Image.Image, params: Dict[str, Any]) -> str: """ Creates a temporary PNG file with embedded metadata from the generation parameters. Returns the path to the created PNG file. """ temp_path = tempfile.mktemp(suffix=".png", prefix="cyberrealistic_") meta = PngImagePlugin.PngInfo() for key, value in params.items(): if value is not None: meta.add_text(key, str(value)) # Add generation timestamp and model info meta.add_text("Generated", datetime.now().strftime("%Y-%m-%d %H:%M:%S UTC")) meta.add_text("Model", f"{MODEL_REPO}/{MODEL_FILENAME}") image.save(temp_path, "PNG", pnginfo=meta, optimize=True) return temp_path def format_generation_info(params: Dict[str, Any], generation_time: float) -> str: """ Formats the generation information into a human-readable string for display. """ info_lines = [ f"✅ Generated in {generation_time:.1f}s", f"📐 Resolution: {params.get('width', 'N/A')}×{params.get('height', 'N/A')}", f"đŸŽ¯ Prompt: {params.get('prompt', '')[:60]}{'...' if len(params.get('prompt', '')) > 60 else ''}", f"đŸšĢ Negative: {params.get('negative_prompt', 'None')[:40]}{'...' if len(params.get('negative_prompt', '')) > 40 else ''}", f"🎲 Seed: {params.get('seed', 'N/A')}", f"📊 Steps: {params.get('steps', 'N/A')} | CFG: {params.get('guidance_scale', 'N/A')}" ] if 'strength' in params: info_lines.append(f"đŸ’Ē Strength: {params['strength']}") return "\n".join(info_lines) @spaces.GPU(duration=120) # Increased duration for model loading and generation def generate_txt2img(prompt: str, negative_prompt: str, steps: int, guidance_scale: float, width: int, height: int, seed: int, add_quality: bool) -> Tuple: """ Handles text-to-image generation, including parameter processing, model inference, NSFW detection, and metadata creation. """ if not prompt.strip(): return None, None, "❌ Please enter a prompt." # Lazy load models if not already loaded if not pipe_manager.load_models(): return None, None, "❌ Failed to load model. Please try again." try: pipe_manager.clear_memory() # Clear memory before generation # Process parameters width, height = validate_and_fix_dimensions(width, height) if seed == -1: seed = random.randint(0, MAX_SEED) enhanced_prompt = enhance_prompt(prompt, add_quality) generator = torch.Generator(device=DEVICE).manual_seed(seed) # Generation parameters dictionary gen_params = { "prompt": enhanced_prompt, "negative_prompt": negative_prompt or DEFAULT_NEGATIVE, "num_inference_steps": min(max(steps, 10), 50), # Clamp steps to a reasonable range "guidance_scale": max(1.0, min(guidance_scale, 20.0)), # Clamp guidance scale "width": width, "height": height, "generator": generator, "output_type": "pil" } logger.info(f"Generating: {enhanced_prompt[:50]}...") start_time = time.time() with torch.inference_mode(): result = pipe_manager.txt2img_pipe(**gen_params) generation_time = time.time() - start_time # Perform NSFW Detection on the generated image is_nsfw_result, nsfw_confidence = pipe_manager.is_nsfw(result.images[0], enhanced_prompt) if is_nsfw_result: # If NSFW, blur the image and return a warning message blurred_image = result.images[0].filter(ImageFilter.GaussianBlur(radius=20)) warning_msg = f"âš ī¸ Content flagged as potentially inappropriate (confidence: {nsfw_confidence:.2f}). Image has been blurred." # Still save metadata but mark as filtered metadata = { "prompt": enhanced_prompt, "negative_prompt": negative_prompt or DEFAULT_NEGATIVE, "steps": gen_params["num_inference_steps"], "guidance_scale": gen_params["guidance_scale"], "width": width, "height": height, "seed": seed, "sampler": "Euler Ancestral", "model_hash": "cyberrealistic_pony_v110", "nsfw_filtered": "true", "nsfw_confidence": f"{nsfw_confidence:.3f}" } png_path = create_metadata_png(blurred_image, metadata) info_text = f"{warning_msg}\n\n{format_generation_info(metadata, generation_time)}" return blurred_image, png_path, info_text # If not NSFW, prepare metadata and save the original image metadata = { "prompt": enhanced_prompt, "negative_prompt": negative_prompt or DEFAULT_NEGATIVE, "steps": gen_params["num_inference_steps"], "guidance_scale": gen_params["guidance_scale"], "width": width, "height": height, "seed": seed, "sampler": "Euler Ancestral", "model_hash": "cyberrealistic_pony_v110" } # Save with metadata png_path = create_metadata_png(result.images[0], metadata) info_text = format_generation_info(metadata, generation_time) return result.images[0], png_path, info_text except torch.cuda.OutOfMemoryError: pipe_manager.clear_memory() return None, None, "❌ GPU out of memory. Try smaller dimensions or fewer steps." except Exception as e: logger.error(f"Generation error: {e}") return None, None, f"❌ Generation failed: {str(e)}" finally: pipe_manager.clear_memory() # Ensure memory is cleared even if an occurs @spaces.GPU(duration=120) # Increased duration for model loading and generation def generate_img2img(input_image: Image.Image, prompt: str, negative_prompt: str, steps: int, guidance_scale: float, strength: float, seed: int, add_quality: bool) -> Tuple: """ Handles image-to-image generation, including image preprocessing, parameter processing, model inference, NSFW detection, and metadata creation. """ if input_image is None: return None, None, "❌ Please upload an input image." if not prompt.strip(): return None, None, "❌ Please enter a prompt." # Lazy load models if not already loaded if not pipe_manager.load_models(): return None, None, "❌ Failed to load model. Please try again." try: pipe_manager.clear_memory() # Clear memory before generation # Process input image: convert to RGB if necessary if input_image.mode != 'RGB': input_image = input_image.convert('RGB') # Smart resizing maintaining aspect ratio to fit within max_dimension original_size = input_image.size max_dimension = 1024 if max(original_size) > max_dimension: input_image.thumbnail((max_dimension, max_dimension), Image.Resampling.LANCZOS) # Ensure SDXL compatible dimensions (multiples of 64) w, h = validate_and_fix_dimensions(*input_image.size) input_image = input_image.resize((w, h), Image.Resampling.LANCZOS) # Process other parameters if seed == -1: seed = random.randint(0, MAX_SEED) enhanced_prompt = enhance_prompt(prompt, add_quality) generator = torch.Generator(device=DEVICE).manual_seed(seed) # Generation parameters dictionary gen_params = { "prompt": enhanced_prompt, "negative_prompt": negative_prompt or DEFAULT_NEGATIVE, "image": input_image, "num_inference_steps": min(max(steps, 10), 50), # Clamp steps "guidance_scale": max(1.0, min(guidance_scale, 20.0)), # Clamp guidance scale "strength": max(0.1, min(strength, 1.0)), # Clamp strength "generator": generator, "output_type": "pil" } logger.info(f"Transforming: {enhanced_prompt[:50]}...") start_time = time.time() with torch.inference_mode(): result = pipe_manager.img2img_pipe(**gen_params) generation_time = time.time() - start_time # Perform NSFW Detection on the transformed image is_nsfw_result, nsfw_confidence = pipe_manager.is_nsfw(result.images[0], enhanced_prompt) if is_nsfw_result: # If NSFW, blur the image and return a warning message blurred_image = result.images[0].filter(ImageFilter.GaussianBlur(radius=20)) warning_msg = f"âš ī¸ Content flagged as potentially inappropriate (confidence: {nsfw_confidence:.2f}). Image has been blurred." metadata = { "prompt": enhanced_prompt, "negative_prompt": negative_prompt or DEFAULT_NEGATIVE, "steps": gen_params["num_inference_steps"], "guidance_scale": gen_params["guidance_scale"], "strength": gen_params["strength"], "width": w, "height": h, "seed": seed, "sampler": "Euler Ancestral", "model_hash": "cyberrealistic_pony_v110", "nsfw_filtered": "true", "nsfw_confidence": f"{nsfw_confidence:.3f}" } png_path = create_metadata_png(blurred_image, metadata) info_text = f"{warning_msg}\n\n{format_generation_info(metadata, generation_time)}" return blurred_image, png_path, info_text # If not NSFW, prepare metadata and save the original image metadata = { "prompt": enhanced_prompt, "negative_prompt": negative_prompt or DEFAULT_NEGATIVE, "steps": gen_params["num_inference_steps"], "guidance_scale": gen_params["guidance_scale"], "strength": gen_params["strength"], "width": w, "height": h, "seed": seed, "sampler": "Euler Ancestral", "model_hash": "cyberrealistic_pony_v110" } png_path = create_metadata_png(result.images[0], metadata) info_text = format_generation_info(metadata, generation_time) return result.images[0], png_path, info_text except torch.cuda.OutOfMemoryError: pipe_manager.clear_memory() return None, None, "❌ GPU out of memory. Try lower strength or fewer steps." except Exception as e: logger.error(f"Generation error: {e}") return None, None, f"❌ Generation failed: {str(e)}" finally: pipe_manager.clear_memory() # Ensure memory is cleared even if an error occurs def get_random_prompt(): """Returns a random example prompt from a predefined list.""" return random.choice(EXAMPLE_PROMPTS) # Enhanced Gradio interface def create_interface(): """ Creates and returns the Gradio Blocks interface for the CyberRealistic Pony Generator. This includes tabs for Text-to-Image and Image-to-Image, along with controls and outputs. """ with gr.Blocks( title="CyberRealistic Pony - SDXL Generator", theme=gr.themes.Soft(primary_hue="blue"), css=""" .generate-btn { background: linear-gradient(45deg, #667eea 0%, #764ba2 100%) !important; border: none !important; } .generate-btn:hover { transform: translateY(-2px); box-shadow: 0 4px 12px rgba(0,0,0,0.2); } """ ) as demo: gr.Markdown(""" # 🎨 CyberRealistic Pony Generator **High-quality SDXL image generation** â€ĸ Optimized for HuggingFace Spaces â€ĸ **NSFW Content Filter Enabled** > ⚡ **First generation takes longer** (model loading) â€ĸ 📋 **Metadata embedded** in all outputs â€ĸ đŸ›Ąī¸ **Content filtered for safety** """) with gr.Tabs(): # Text to Image Tab with gr.TabItem("🎨 Text to Image", id="txt2img"): with gr.Row(): with gr.Column(scale=1): with gr.Group(): txt_prompt = gr.Textbox( label="✨ Prompt", placeholder="A beautiful landscape with mountains and sunset...", lines=3, max_lines=5 ) with gr.Row(): txt_example_btn = gr.Button("🎲 Random", size="sm") txt_clear_btn = gr.Button("đŸ—‘ī¸ Clear", size="sm") with gr.Accordion("âš™ī¸ Advanced Settings", open=False): txt_negative = gr.Textbox( label="❌ Negative Prompt", value=DEFAULT_NEGATIVE, lines=2, max_lines=3 ) txt_quality = gr.Checkbox( label="✨ Add Quality Tags", value=True, info="Automatically enhance prompt with quality tags" ) with gr.Row(): txt_steps = gr.Slider( 10, 50, 25, step=1, label="📊 Steps", info="More steps = better quality, slower generation" ) txt_guidance = gr.Slider( 1.0, 15.0, 7.5, step=0.5, label="đŸŽ›ī¸ CFG Scale", info="How closely to follow the prompt" ) with gr.Row(): txt_width = gr.Slider( 512, 1024, 768, step=64, label="📐 Width" ) txt_height = gr.Slider( 512, 1024, 768, step=64, label="📐 Height" ) txt_seed = gr.Slider( -1, MAX_SEED, -1, step=1, label="🎲 Seed (-1 = random)", info="Use same seed for reproducible results" ) txt_generate_btn = gr.Button( "🎨 Generate Image", variant="primary", size="lg", elem_classes=["generate-btn"] ) with gr.Column(scale=1): txt_output_image = gr.Image( label="đŸ–ŧī¸ Generated Image", height=500, show_download_button=True ) txt_download_file = gr.File( label="đŸ“Ĩ Download PNG (with metadata)", file_types=[".png"] ) txt_info = gr.Textbox( label="â„šī¸ Generation Info", lines=6, max_lines=8, interactive=False ) # Image to Image Tab with gr.TabItem("đŸ–ŧī¸ Image to Image", id="img2img"): with gr.Row(): with gr.Column(scale=1): img_input = gr.Image( label="📤 Input Image", type="pil", height=300 ) with gr.Group(): img_prompt = gr.Textbox( label="✨ Transformation Prompt", placeholder="digital art style, vibrant colors...", lines=3 ) with gr.Row(): img_example_btn = gr.Button("🎲 Random", size="sm") img_clear_btn = gr.Button("đŸ—‘ī¸ Clear", size="sm") with gr.Accordion("âš™ī¸ Advanced Settings", open=False): img_negative = gr.Textbox( label="❌ Negative Prompt", value=DEFAULT_NEGATIVE, lines=2 ) img_quality = gr.Checkbox( label="✨ Add Quality Tags", value=True ) with gr.Row(): img_steps = gr.Slider(10, 50, 25, step=1, label="📊 Steps") img_guidance = gr.Slider(1.0, 15.0, 7.5, step=0.5, label="đŸŽ›ī¸ CFG") img_strength = gr.Slider( 0.1, 1.0, 0.75, step=0.05, label="đŸ’Ē Transformation Strength", info="Higher = more creative, lower = more faithful to input" ) img_seed = gr.Slider(-1, MAX_SEED, -1, step=1, label="🎲 Seed") img_generate_btn = gr.Button( "đŸ–ŧī¸ Transform Image", variant="primary", size="lg", elem_classes=["generate-btn"] ) with gr.Column(scale=1): img_output_image = gr.Image( label="đŸ–ŧī¸ Transformed Image", height=500, show_download_button=True ) img_download_file = gr.File( label="đŸ“Ĩ Download PNG (with metadata)", file_types=[".png"] ) img_info = gr.Textbox( label="â„šī¸ Generation Info", lines=6, interactive=False ) # Event handlers txt_generate_btn.click( fn=generate_txt2img, inputs=[txt_prompt, txt_negative, txt_steps, txt_guidance, txt_width, txt_height, txt_seed, txt_quality], outputs=[txt_output_image, txt_download_file, txt_info], show_progress=True ) img_generate_btn.click( fn=generate_img2img, inputs=[img_input, img_prompt, img_negative, img_steps, img_guidance, img_strength, img_seed, img_quality], outputs=[img_output_image, img_download_file, img_info], show_progress=True ) # Example prompt buttons txt_example_btn.click(fn=get_random_prompt, outputs=[txt_prompt]) img_example_btn.click(fn=get_random_prompt, outputs=[img_prompt]) # Clear buttons txt_clear_btn.click(lambda: "", outputs=[txt_prompt]) img_clear_btn.click(lambda: "", outputs=[img_prompt]) return demo # Initialize and launch the Gradio application if __name__ == "__main__": logger.info(f"🚀 Initializing CyberRealistic Pony Generator on {DEVICE}") logger.info(f"📱 PyTorch version: {torch.__version__}") logger.info(f"đŸ›Ąī¸ NSFW Content Filter: Enabled") demo = create_interface() demo.queue(max_size=20) # Enable queuing for better user experience demo.launch( server_name="0.0.0.0", server_port=7860, show_error=True, share=False # Set to True if you want a public link (e.g., for Hugging Face Spaces) )