Spaces:
Paused
Paused
File size: 33,612 Bytes
1ebd84a a50d483 c02b5d2 1ebd84a 5cbe56c a50d483 1ebd84a c02b5d2 a50d483 1ebd84a a50d483 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 59a4329 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 933510e fd21bc1 933510e fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 933510e fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 f3be032 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 27d1197 fd21bc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 |
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, EulerAncestralDiscreteScheduler
from PIL import Image, PngImagePlugin, ImageFilter
from datetime import datetime
import os
import gc
import time
import spaces
from typing import Optional, Tuple, Dict, Any
from huggingface_hub import hf_hub_download
import tempfile
import random
import logging
import torch.nn.functional as F
from transformers import CLIPProcessor, CLIPModel
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
MODEL_REPO = "ajsbsd/CyberRealistic-Pony"
MODEL_FILENAME = "cyberrealisticPony_v110.safetensors"
NSFW_MODEL_ID = "openai/clip-vit-base-patch32" # CLIP model for NSFW detection
MAX_SEED = 2**32 - 1
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32
NSFW_THRESHOLD = 0.25 # Threshold for NSFW detection
# Global pipeline state
class PipelineManager:
def __init__(self):
self.txt2img_pipe = None
self.img2img_pipe = None
self.nsfw_detector_model = None
self.nsfw_detector_processor = None
self.model_loaded = False
self.nsfw_detector_loaded = False
def clear_memory(self):
"""Aggressive memory cleanup to free up GPU/CPU memory."""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
def load_nsfw_detector(self) -> bool:
"""Load NSFW detection model (CLIP) with error handling."""
if self.nsfw_detector_loaded:
return True
try:
logger.info("Loading NSFW detector...")
self.nsfw_detector_processor = CLIPProcessor.from_pretrained(NSFW_MODEL_ID)
# Add use_safetensors=True to the CLIPModel.from_pretrained call
self.nsfw_detector_model = CLIPModel.from_pretrained(NSFW_MODEL_ID, use_safetensors=True)
if DEVICE == "cuda":
self.nsfw_detector_model = self.nsfw_detector_model.to(DEVICE)
self.nsfw_detector_loaded = True
logger.info("NSFW detector loaded successfully!")
return True
except Exception as e:
logger.error(f"Failed to load NSFW detector: {e}")
self.nsfw_detector_loaded = False
return False
def is_nsfw(self, image: Image.Image, prompt: str = "") -> Tuple[bool, float]:
"""
Detects NSFW content using CLIP-based zero-shot classification.
Falls back to prompt-based detection if CLIP model fails or is not loaded.
"""
try:
# Load NSFW detector if not already loaded
if not self.nsfw_detector_loaded:
if not self.load_nsfw_detector():
# If NSFW detector cannot be loaded, fall back to prompt-based
return self._fallback_nsfw_detection(prompt)
# CLIP-based NSFW detection
inputs = self.nsfw_detector_processor(images=image, return_tensors="pt").to(DEVICE)
with torch.no_grad():
image_features = self.nsfw_detector_model.get_image_features(**inputs)
# Define text prompts for classification
safe_prompts = [
"a safe family-friendly image",
"a general photo",
"appropriate content",
"artistic photography"
]
unsafe_prompts = [
"explicit adult content",
"nudity",
"inappropriate sexual content",
"pornographic material"
]
# Get text features
safe_inputs = self.nsfw_detector_processor(
text=safe_prompts, return_tensors="pt", padding=True
).to(DEVICE)
unsafe_inputs = self.nsfw_detector_processor(
text=unsafe_prompts, return_tensors="pt", padding=True
).to(DEVICE)
safe_features = self.nsfw_detector_model.get_text_features(**safe_inputs)
unsafe_features = self.nsfw_detector_model.get_text_features(**unsafe_inputs)
# Normalize features for cosine similarity
image_features = F.normalize(image_features, p=2, dim=-1)
safe_features = F.normalize(safe_features, p=2, dim=-1)
unsafe_features = F.normalize(unsafe_features, p=2, dim=-1)
# Calculate similarities
safe_similarity = (image_features @ safe_features.T).mean().item()
unsafe_similarity = (image_features @ unsafe_features.T).mean().item()
# Classification logic
is_nsfw_result = (
unsafe_similarity > safe_similarity and
unsafe_similarity > NSFW_THRESHOLD
)
confidence = unsafe_similarity if is_nsfw_result else safe_similarity
if is_nsfw_result:
logger.warning(f"π¨ NSFW content detected (CLIP-based: {unsafe_similarity:.3f} > {safe_similarity:.3f})")
return is_nsfw_result, confidence
except Exception as e:
logger.error(f"NSFW detection error (CLIP model failed): {e}")
# Fallback to prompt-based detection if CLIP model encounters an error
return self._fallback_nsfw_detection(prompt)
def _fallback_nsfw_detection(self, prompt: str = "") -> Tuple[bool, float]:
"""Fallback NSFW detection based on prompt keyword analysis."""
nsfw_keywords = [
'nude', 'naked', 'nsfw', 'explicit', 'sexual', 'erotic', 'porn',
'adult', 'xxx', 'sex', 'breast', 'nipple', 'genital', 'provocative'
]
prompt_lower = prompt.lower()
for keyword in nsfw_keywords:
if keyword in prompt_lower:
logger.warning(f"π¨ NSFW content detected (prompt-based: '{keyword}' found)")
return True, random.uniform(0.7, 0.95)
# Random chance for demonstration (consider removing in production)
if random.random() < 0.02: # 2% chance for demo
logger.warning("π¨ NSFW content detected (random demo detection)")
return True, random.uniform(0.6, 0.8)
return False, random.uniform(0.1, 0.3)
def load_models(self) -> bool:
"""Load Stable Diffusion XL models (txt2img and img2img) with enhanced error handling and memory optimization."""
if self.model_loaded:
return True
try:
logger.info("Loading CyberRealistic Pony models...")
# Download model with better error handling
model_path = hf_hub_download(
repo_id=MODEL_REPO,
filename=MODEL_FILENAME,
cache_dir=os.environ.get("HF_CACHE_DIR", "/tmp/hf_cache"),
resume_download=True
)
logger.info(f"Model downloaded to: {model_path}")
# Load txt2img pipeline with optimizations
self.txt2img_pipe = StableDiffusionXLPipeline.from_single_file(
model_path,
torch_dtype=DTYPE,
use_safetensors=True,
variant="fp16" if DEVICE == "cuda" else None,
safety_checker=None, # Disable for faster loading, using custom NSFW check
requires_safety_checker=False
)
# Apply memory optimizations to txt2img pipeline
self._optimize_pipeline(self.txt2img_pipe)
# Create img2img pipeline sharing components
self.img2img_pipe = StableDiffusionXLImg2ImgPipeline(
vae=self.txt2img_pipe.vae,
text_encoder=self.txt2img_pipe.text_encoder,
text_encoder_2=self.txt2img_pipe.text_encoder_2,
tokenizer=self.txt2img_pipe.tokenizer,
tokenizer_2=self.txt2img_pipe.tokenizer_2,
unet=self.txt2img_pipe.unet,
scheduler=self.txt2img_pipe.scheduler,
# Removed safety_checker and requires_safety_checker as they are not valid for this constructor
)
# Apply memory optimizations to img2img pipeline
self._optimize_pipeline(self.img2img_pipe)
self.model_loaded = True
logger.info("Models loaded successfully!")
return True
except Exception as e:
logger.error(f"Failed to load models: {e}")
self.model_loaded = False
return False
def _optimize_pipeline(self, pipeline):
"""Apply memory optimizations to a given diffusion pipeline."""
pipeline.enable_attention_slicing()
pipeline.enable_vae_slicing()
if DEVICE == "cuda":
# Use sequential CPU offloading for better memory management on GPU
pipeline.enable_sequential_cpu_offload()
# Enable memory efficient attention if xformers is available
try:
pipeline.enable_xformers_memory_efficient_attention()
except Exception: # Catch any error if xformers is not installed/configured
logger.info("xformers not available, using default attention")
else:
# Move pipeline to CPU if CUDA is not available
pipeline = pipeline.to(DEVICE)
# Global pipeline manager instance
pipe_manager = PipelineManager()
# Enhanced prompt templates
QUALITY_TAGS = "score_9, score_8_up, score_7_up, masterpiece, best quality, ultra detailed, 8k"
DEFAULT_NEGATIVE = """(worst quality:1.4), (low quality:1.4), (normal quality:1.2),
lowres, bad anatomy, bad hands, signature, watermarks, ugly, imperfect eyes,
skewed eyes, unnatural face, unnatural body, error, extra limb, missing limbs,
painting by bad-artist, 3d, render"""
EXAMPLE_PROMPTS = [
"beautiful anime girl with long flowing silver hair, sakura petals, soft morning light",
"cyberpunk street scene, neon lights reflecting on wet pavement, futuristic cityscape",
"majestic dragon soaring through storm clouds, lightning, epic fantasy scene",
"cute anthropomorphic fox girl, fluffy tail, forest clearing, magical sparkles",
"elegant Victorian lady in ornate dress, portrait, vintage photography style",
"futuristic mech suit, glowing energy core, sci-fi laboratory background",
"mystical unicorn with rainbow mane, enchanted forest, ethereal atmosphere",
"steampunk inventor's workshop, brass gears, mechanical contraptions, warm lighting"
]
def enhance_prompt(prompt: str, add_quality: bool = True) -> str:
"""
Enhances the given prompt with quality tags unless they are already present.
"""
if not prompt.strip():
return ""
# Don't add quality tags if they're already present in the prompt (case-insensitive)
if any(tag in prompt.lower() for tag in ["score_", "masterpiece", "best quality"]):
return prompt
if add_quality:
return f"{QUALITY_TAGS}, {prompt}"
return prompt
def validate_and_fix_dimensions(width: int, height: int) -> Tuple[int, int]:
"""
Ensures SDXL-compatible dimensions (multiples of 64) and reasonable aspect ratios.
Clamps dimensions between 512 and 1024.
"""
# Round to nearest multiple of 64
width = max(512, min(1024, ((width + 31) // 64) * 64))
height = max(512, min(1024, ((height + 31) // 64) * 64))
# Ensure reasonable aspect ratios (prevent extremely wide/tall images)
aspect_ratio = width / height
if aspect_ratio > 2.0: # Too wide, adjust height
height = width // 2
elif aspect_ratio < 0.5: # Too tall, adjust width
width = height // 2
return width, height
def create_metadata_png(image: Image.Image, params: Dict[str, Any]) -> str:
"""
Creates a temporary PNG file with embedded metadata from the generation parameters.
Returns the path to the created PNG file.
"""
temp_path = tempfile.mktemp(suffix=".png", prefix="cyberrealistic_")
meta = PngImagePlugin.PngInfo()
for key, value in params.items():
if value is not None:
meta.add_text(key, str(value))
# Add generation timestamp and model info
meta.add_text("Generated", datetime.now().strftime("%Y-%m-%d %H:%M:%S UTC"))
meta.add_text("Model", f"{MODEL_REPO}/{MODEL_FILENAME}")
image.save(temp_path, "PNG", pnginfo=meta, optimize=True)
return temp_path
def format_generation_info(params: Dict[str, Any], generation_time: float) -> str:
"""
Formats the generation information into a human-readable string for display.
"""
info_lines = [
f"β
Generated in {generation_time:.1f}s",
f"π Resolution: {params.get('width', 'N/A')}Γ{params.get('height', 'N/A')}",
f"π― Prompt: {params.get('prompt', '')[:60]}{'...' if len(params.get('prompt', '')) > 60 else ''}",
f"π« Negative: {params.get('negative_prompt', 'None')[:40]}{'...' if len(params.get('negative_prompt', '')) > 40 else ''}",
f"π² Seed: {params.get('seed', 'N/A')}",
f"π Steps: {params.get('steps', 'N/A')} | CFG: {params.get('guidance_scale', 'N/A')}"
]
if 'strength' in params:
info_lines.append(f"πͺ Strength: {params['strength']}")
return "\n".join(info_lines)
@spaces.GPU(duration=120) # Increased duration for model loading and generation
def generate_txt2img(prompt: str, negative_prompt: str, steps: int, guidance_scale: float,
width: int, height: int, seed: int, add_quality: bool) -> Tuple:
"""
Handles text-to-image generation, including parameter processing, model inference,
NSFW detection, and metadata creation.
"""
if not prompt.strip():
return None, None, "β Please enter a prompt."
# Lazy load models if not already loaded
if not pipe_manager.load_models():
return None, None, "β Failed to load model. Please try again."
try:
pipe_manager.clear_memory() # Clear memory before generation
# Process parameters
width, height = validate_and_fix_dimensions(width, height)
if seed == -1:
seed = random.randint(0, MAX_SEED)
enhanced_prompt = enhance_prompt(prompt, add_quality)
generator = torch.Generator(device=DEVICE).manual_seed(seed)
# Generation parameters dictionary
gen_params = {
"prompt": enhanced_prompt,
"negative_prompt": negative_prompt or DEFAULT_NEGATIVE,
"num_inference_steps": min(max(steps, 10), 50), # Clamp steps to a reasonable range
"guidance_scale": max(1.0, min(guidance_scale, 20.0)), # Clamp guidance scale
"width": width,
"height": height,
"generator": generator,
"output_type": "pil"
}
logger.info(f"Generating: {enhanced_prompt[:50]}...")
start_time = time.time()
with torch.inference_mode():
result = pipe_manager.txt2img_pipe(**gen_params)
generation_time = time.time() - start_time
# Perform NSFW Detection on the generated image
is_nsfw_result, nsfw_confidence = pipe_manager.is_nsfw(result.images[0], enhanced_prompt)
if is_nsfw_result:
# If NSFW, blur the image and return a warning message
blurred_image = result.images[0].filter(ImageFilter.GaussianBlur(radius=20))
warning_msg = f"β οΈ Content flagged as potentially inappropriate (confidence: {nsfw_confidence:.2f}). Image has been blurred."
# Still save metadata but mark as filtered
metadata = {
"prompt": enhanced_prompt,
"negative_prompt": negative_prompt or DEFAULT_NEGATIVE,
"steps": gen_params["num_inference_steps"],
"guidance_scale": gen_params["guidance_scale"],
"width": width,
"height": height,
"seed": seed,
"sampler": "Euler Ancestral",
"model_hash": "cyberrealistic_pony_v110",
"nsfw_filtered": "true",
"nsfw_confidence": f"{nsfw_confidence:.3f}"
}
png_path = create_metadata_png(blurred_image, metadata)
info_text = f"{warning_msg}\n\n{format_generation_info(metadata, generation_time)}"
return blurred_image, png_path, info_text
# If not NSFW, prepare metadata and save the original image
metadata = {
"prompt": enhanced_prompt,
"negative_prompt": negative_prompt or DEFAULT_NEGATIVE,
"steps": gen_params["num_inference_steps"],
"guidance_scale": gen_params["guidance_scale"],
"width": width,
"height": height,
"seed": seed,
"sampler": "Euler Ancestral",
"model_hash": "cyberrealistic_pony_v110"
}
# Save with metadata
png_path = create_metadata_png(result.images[0], metadata)
info_text = format_generation_info(metadata, generation_time)
return result.images[0], png_path, info_text
except torch.cuda.OutOfMemoryError:
pipe_manager.clear_memory()
return None, None, "β GPU out of memory. Try smaller dimensions or fewer steps."
except Exception as e:
logger.error(f"Generation error: {e}")
return None, None, f"β Generation failed: {str(e)}"
finally:
pipe_manager.clear_memory() # Ensure memory is cleared even if an occurs
@spaces.GPU(duration=120) # Increased duration for model loading and generation
def generate_img2img(input_image: Image.Image, prompt: str, negative_prompt: str,
steps: int, guidance_scale: float, strength: float, seed: int,
add_quality: bool) -> Tuple:
"""
Handles image-to-image generation, including image preprocessing, parameter processing,
model inference, NSFW detection, and metadata creation.
"""
if input_image is None:
return None, None, "β Please upload an input image."
if not prompt.strip():
return None, None, "β Please enter a prompt."
# Lazy load models if not already loaded
if not pipe_manager.load_models():
return None, None, "β Failed to load model. Please try again."
try:
pipe_manager.clear_memory() # Clear memory before generation
# Process input image: convert to RGB if necessary
if input_image.mode != 'RGB':
input_image = input_image.convert('RGB')
# Smart resizing maintaining aspect ratio to fit within max_dimension
original_size = input_image.size
max_dimension = 1024
if max(original_size) > max_dimension:
input_image.thumbnail((max_dimension, max_dimension), Image.Resampling.LANCZOS)
# Ensure SDXL compatible dimensions (multiples of 64)
w, h = validate_and_fix_dimensions(*input_image.size)
input_image = input_image.resize((w, h), Image.Resampling.LANCZOS)
# Process other parameters
if seed == -1:
seed = random.randint(0, MAX_SEED)
enhanced_prompt = enhance_prompt(prompt, add_quality)
generator = torch.Generator(device=DEVICE).manual_seed(seed)
# Generation parameters dictionary
gen_params = {
"prompt": enhanced_prompt,
"negative_prompt": negative_prompt or DEFAULT_NEGATIVE,
"image": input_image,
"num_inference_steps": min(max(steps, 10), 50), # Clamp steps
"guidance_scale": max(1.0, min(guidance_scale, 20.0)), # Clamp guidance scale
"strength": max(0.1, min(strength, 1.0)), # Clamp strength
"generator": generator,
"output_type": "pil"
}
logger.info(f"Transforming: {enhanced_prompt[:50]}...")
start_time = time.time()
with torch.inference_mode():
result = pipe_manager.img2img_pipe(**gen_params)
generation_time = time.time() - start_time
# Perform NSFW Detection on the transformed image
is_nsfw_result, nsfw_confidence = pipe_manager.is_nsfw(result.images[0], enhanced_prompt)
if is_nsfw_result:
# If NSFW, blur the image and return a warning message
blurred_image = result.images[0].filter(ImageFilter.GaussianBlur(radius=20))
warning_msg = f"β οΈ Content flagged as potentially inappropriate (confidence: {nsfw_confidence:.2f}). Image has been blurred."
metadata = {
"prompt": enhanced_prompt,
"negative_prompt": negative_prompt or DEFAULT_NEGATIVE,
"steps": gen_params["num_inference_steps"],
"guidance_scale": gen_params["guidance_scale"],
"strength": gen_params["strength"],
"width": w,
"height": h,
"seed": seed,
"sampler": "Euler Ancestral",
"model_hash": "cyberrealistic_pony_v110",
"nsfw_filtered": "true",
"nsfw_confidence": f"{nsfw_confidence:.3f}"
}
png_path = create_metadata_png(blurred_image, metadata)
info_text = f"{warning_msg}\n\n{format_generation_info(metadata, generation_time)}"
return blurred_image, png_path, info_text
# If not NSFW, prepare metadata and save the original image
metadata = {
"prompt": enhanced_prompt,
"negative_prompt": negative_prompt or DEFAULT_NEGATIVE,
"steps": gen_params["num_inference_steps"],
"guidance_scale": gen_params["guidance_scale"],
"strength": gen_params["strength"],
"width": w,
"height": h,
"seed": seed,
"sampler": "Euler Ancestral",
"model_hash": "cyberrealistic_pony_v110"
}
png_path = create_metadata_png(result.images[0], metadata)
info_text = format_generation_info(metadata, generation_time)
return result.images[0], png_path, info_text
except torch.cuda.OutOfMemoryError:
pipe_manager.clear_memory()
return None, None, "β GPU out of memory. Try lower strength or fewer steps."
except Exception as e:
logger.error(f"Generation error: {e}")
return None, None, f"β Generation failed: {str(e)}"
finally:
pipe_manager.clear_memory() # Ensure memory is cleared even if an error occurs
def get_random_prompt():
"""Returns a random example prompt from a predefined list."""
return random.choice(EXAMPLE_PROMPTS)
# Enhanced Gradio interface
def create_interface():
"""
Creates and returns the Gradio Blocks interface for the CyberRealistic Pony Generator.
This includes tabs for Text-to-Image and Image-to-Image, along with controls and outputs.
"""
with gr.Blocks(
title="CyberRealistic Pony - SDXL Generator",
theme=gr.themes.Soft(primary_hue="blue"),
css="""
.generate-btn {
background: linear-gradient(45deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0,0,0,0.2);
}
"""
) as demo:
gr.Markdown("""
# π¨ CyberRealistic Pony Generator
**High-quality SDXL image generation** β’ Optimized for HuggingFace Spaces β’ **NSFW Content Filter Enabled**
> β‘ **First generation takes longer** (model loading) β’ π **Metadata embedded** in all outputs β’ π‘οΈ **Content filtered for safety**
""")
with gr.Tabs():
# Text to Image Tab
with gr.TabItem("π¨ Text to Image", id="txt2img"):
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
txt_prompt = gr.Textbox(
label="β¨ Prompt",
placeholder="A beautiful landscape with mountains and sunset...",
lines=3,
max_lines=5
)
with gr.Row():
txt_example_btn = gr.Button("π² Random", size="sm")
txt_clear_btn = gr.Button("ποΈ Clear", size="sm")
with gr.Accordion("βοΈ Advanced Settings", open=False):
txt_negative = gr.Textbox(
label="β Negative Prompt",
value=DEFAULT_NEGATIVE,
lines=2,
max_lines=3
)
txt_quality = gr.Checkbox(
label="β¨ Add Quality Tags",
value=True,
info="Automatically enhance prompt with quality tags"
)
with gr.Row():
txt_steps = gr.Slider(
10, 50, 25, step=1,
label="π Steps",
info="More steps = better quality, slower generation"
)
txt_guidance = gr.Slider(
1.0, 15.0, 7.5, step=0.5,
label="ποΈ CFG Scale",
info="How closely to follow the prompt"
)
with gr.Row():
txt_width = gr.Slider(
512, 1024, 768, step=64,
label="π Width"
)
txt_height = gr.Slider(
512, 1024, 768, step=64,
label="π Height"
)
txt_seed = gr.Slider(
-1, MAX_SEED, -1, step=1,
label="π² Seed (-1 = random)",
info="Use same seed for reproducible results"
)
txt_generate_btn = gr.Button(
"π¨ Generate Image",
variant="primary",
size="lg",
elem_classes=["generate-btn"]
)
with gr.Column(scale=1):
txt_output_image = gr.Image(
label="πΌοΈ Generated Image",
height=500,
show_download_button=True
)
txt_download_file = gr.File(
label="π₯ Download PNG (with metadata)",
file_types=[".png"]
)
txt_info = gr.Textbox(
label="βΉοΈ Generation Info",
lines=6,
max_lines=8,
interactive=False
)
# Image to Image Tab
with gr.TabItem("πΌοΈ Image to Image", id="img2img"):
with gr.Row():
with gr.Column(scale=1):
img_input = gr.Image(
label="π€ Input Image",
type="pil",
height=300
)
with gr.Group():
img_prompt = gr.Textbox(
label="β¨ Transformation Prompt",
placeholder="digital art style, vibrant colors...",
lines=3
)
with gr.Row():
img_example_btn = gr.Button("π² Random", size="sm")
img_clear_btn = gr.Button("ποΈ Clear", size="sm")
with gr.Accordion("βοΈ Advanced Settings", open=False):
img_negative = gr.Textbox(
label="β Negative Prompt",
value=DEFAULT_NEGATIVE,
lines=2
)
img_quality = gr.Checkbox(
label="β¨ Add Quality Tags",
value=True
)
with gr.Row():
img_steps = gr.Slider(10, 50, 25, step=1, label="π Steps")
img_guidance = gr.Slider(1.0, 15.0, 7.5, step=0.5, label="ποΈ CFG")
img_strength = gr.Slider(
0.1, 1.0, 0.75, step=0.05,
label="πͺ Transformation Strength",
info="Higher = more creative, lower = more faithful to input"
)
img_seed = gr.Slider(-1, MAX_SEED, -1, step=1, label="π² Seed")
img_generate_btn = gr.Button(
"πΌοΈ Transform Image",
variant="primary",
size="lg",
elem_classes=["generate-btn"]
)
with gr.Column(scale=1):
img_output_image = gr.Image(
label="πΌοΈ Transformed Image",
height=500,
show_download_button=True
)
img_download_file = gr.File(
label="π₯ Download PNG (with metadata)",
file_types=[".png"]
)
img_info = gr.Textbox(
label="βΉοΈ Generation Info",
lines=6,
interactive=False
)
# Event handlers
txt_generate_btn.click(
fn=generate_txt2img,
inputs=[txt_prompt, txt_negative, txt_steps, txt_guidance,
txt_width, txt_height, txt_seed, txt_quality],
outputs=[txt_output_image, txt_download_file, txt_info],
show_progress=True
)
img_generate_btn.click(
fn=generate_img2img,
inputs=[img_input, img_prompt, img_negative, img_steps, img_guidance,
img_strength, img_seed, img_quality],
outputs=[img_output_image, img_download_file, img_info],
show_progress=True
)
# Example prompt buttons
txt_example_btn.click(fn=get_random_prompt, outputs=[txt_prompt])
img_example_btn.click(fn=get_random_prompt, outputs=[img_prompt])
# Clear buttons
txt_clear_btn.click(lambda: "", outputs=[txt_prompt])
img_clear_btn.click(lambda: "", outputs=[img_prompt])
return demo
# Initialize and launch the Gradio application
if __name__ == "__main__":
logger.info(f"π Initializing CyberRealistic Pony Generator on {DEVICE}")
logger.info(f"π± PyTorch version: {torch.__version__}")
logger.info(f"π‘οΈ NSFW Content Filter: Enabled")
demo = create_interface()
demo.queue(max_size=20) # Enable queuing for better user experience
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=False # Set to True if you want a public link (e.g., for Hugging Face Spaces)
)
|