|
import numpy as np |
|
import pywt |
|
import cv2 |
|
from PIL import Image |
|
|
|
def wavelet_blocking_noise_estimation(image: Image.Image, blocksize: int = 8) -> Image.Image: |
|
"""Estimate local noise using wavelet blocking. Returns a PIL image of the noise map.""" |
|
im = np.array(image.convert('L')) |
|
y = np.double(im) |
|
cA1, (cH, cV, cD) = pywt.dwt2(y, 'db8') |
|
cD = cD[:cD.shape[0] // blocksize * blocksize, :cD.shape[1] // blocksize * blocksize] |
|
block = np.zeros((cD.shape[0] // blocksize, cD.shape[1] // blocksize, blocksize ** 2)) |
|
for ii in range(0, cD.shape[0] - blocksize + 1, blocksize): |
|
for jj in range(0, cD.shape[1] - blocksize + 1, blocksize): |
|
block_elements = cD[ii:ii+blocksize, jj:jj+blocksize] |
|
block[ii // blocksize, jj // blocksize, :] = block_elements.flatten() |
|
noise_map = np.median(np.abs(block), axis=2) / 0.6745 |
|
noise_map_8u = cv2.normalize(noise_map, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U) |
|
resized_noise_map = cv2.resize(noise_map_8u, (im.shape[1], im.shape[0]), interpolation=cv2.INTER_NEAREST) |
|
return Image.fromarray(resized_noise_map) |