File size: 16,245 Bytes
932e7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac9c2b2
932e7b4
 
 
aa96f77
932e7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac9c2b2
 
 
 
 
 
 
 
 
 
 
932e7b4
 
 
 
ac9c2b2
 
 
932e7b4
 
 
ac9c2b2
 
 
932e7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac9c2b2
 
 
932e7b4
 
 
 
 
 
 
 
 
 
 
 
 
ac9c2b2
 
 
932e7b4
 
 
ac9c2b2
 
 
932e7b4
 
 
ac9c2b2
 
 
932e7b4
 
 
 
 
ac9c2b2
 
 
932e7b4
 
 
 
 
ac9c2b2
 
 
932e7b4
 
 
 
 
 
 
 
 
ac9c2b2
 
 
 
 
 
 
 
 
 
 
 
 
932e7b4
ac9c2b2
 
 
 
 
 
 
 
932e7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88d2155
 
 
 
 
 
 
 
 
932e7b4
 
 
 
 
88d2155
932e7b4
88d2155
932e7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac9c2b2
 
 
88d2155
 
ac9c2b2
932e7b4
aa96f77
 
932e7b4
88d2155
932e7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import os
from typing import Literal
import spaces
import gradio as gr
import modelscope_studio.components.antd as antd
import modelscope_studio.components.antdx as antdx
import modelscope_studio.components.base as ms
from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification
from torchvision import transforms
import torch
from PIL import Image
import numpy as np
import io
import logging
from utils.utils import softmax, augment_image, convert_pil_to_bytes
from utils.gradient import gradient_processing
from utils.minmax import preprocess as minmax_preprocess
from utils.ela import genELA as ELA
from forensics.registry import register_model, MODEL_REGISTRY, ModelEntry


# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)


# Ensure using GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

header_style = {
    "textAlign": 'center',
    "color": '#fff',
    "height": 64,
    "paddingInline": 48,
    "lineHeight": '64px',
    "backgroundColor": '#4096ff',
}

content_style = {
    "textAlign": 'center',
    "minHeight": 120,
    "lineHeight": '120px',
    "color": '#fff',
    "backgroundColor": '#0958d9',
}

sider_style = {
    "textAlign": 'center',
    "lineHeight": '120px',
    "color": '#fff',
    "backgroundColor": '#1677ff',
}

footer_style = {
    "textAlign": 'center',
    "color": '#fff',
    "backgroundColor": '#4096ff',
}

layout_style = {
    "borderRadius": 8,
    "overflow": 'hidden',
    "width": 'calc(100% - 8px)',
    "maxWidth": 'calc(100% - 8px)',
}
# Model paths and class names
MODEL_PATHS = {
    "model_1": "haywoodsloan/ai-image-detector-deploy",
    "model_2": "Heem2/AI-vs-Real-Image-Detection",
    "model_3": "Organika/sdxl-detector",
    "model_4": "cmckinle/sdxl-flux-detector_v1.1",
    "model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model",
    "model_5b": "prithivMLmods/Deepfake-Detection-Exp-02-22",
    "model_6": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL",
    "model_7": "date3k2/vit-real-fake-classification-v4"
}

CLASS_NAMES = {
    "model_1": ['artificial', 'real'],
    "model_2": ['AI Image', 'Real Image'],
    "model_3": ['AI', 'Real'],
    "model_4": ['AI', 'Real'],
    "model_5": ['Realism', 'Deepfake'],
    "model_5b": ['Real', 'Deepfake'],
    "model_6": ['ai_gen', 'human'],
    "model_7": ['Fake', 'Real'],

}

def preprocess_resize_256(image):
    if image.mode != 'RGB':
        image = image.convert('RGB')
    return transforms.Resize((256, 256))(image)

def preprocess_resize_224(image):
    if image.mode != 'RGB':
        image = image.convert('RGB')
    return transforms.Resize((224, 224))(image)

def postprocess_pipeline(prediction, class_names):
    # Assumes HuggingFace pipeline output
    return {pred['label']: pred['score'] for pred in prediction}

def postprocess_logits(outputs, class_names):
    # Assumes model output with logits
    logits = outputs.logits.cpu().numpy()[0]
    probabilities = softmax(logits)
    return {class_names[i]: probabilities[i] for i in range(len(class_names))}

# Expand ModelEntry to include metadata
# (Assume ModelEntry is updated in registry.py to accept display_name, contributor, model_path)
# If not, we will update registry.py accordingly after this.

def register_model_with_metadata(model_id, model, preprocess, postprocess, class_names, display_name, contributor, model_path):
    entry = ModelEntry(model, preprocess, postprocess, class_names)
    entry.display_name = display_name
    entry.contributor = contributor
    entry.model_path = model_path
    MODEL_REGISTRY[model_id] = entry

# Load and register models (example for two models)
image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device)
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
register_model_with_metadata(
    "model_1", clf_1, preprocess_resize_256, postprocess_pipeline, CLASS_NAMES["model_1"],
    display_name="SwinV2 Based", contributor="haywoodsloan", model_path=MODEL_PATHS["model_1"]
)

clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device)
register_model_with_metadata(
    "model_2", clf_2, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_2"],
    display_name="ViT Based", contributor="Heem2", model_path=MODEL_PATHS["model_2"]
)

# Register remaining models
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device)
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device)
def preprocess_256(image):
    if image.mode != 'RGB':
        image = image.convert('RGB')
    return transforms.Resize((256, 256))(image)
def postprocess_logits_model3(outputs, class_names):
    logits = outputs.logits.cpu().numpy()[0]
    probabilities = softmax(logits)
    return {class_names[i]: probabilities[i] for i in range(len(class_names))}
def model3_infer(image):
    inputs = feature_extractor_3(image, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model_3(**inputs)
    return outputs
register_model_with_metadata(
    "model_3", model3_infer, preprocess_256, postprocess_logits_model3, CLASS_NAMES["model_3"],
    display_name="SDXL Dataset", contributor="Organika", model_path=MODEL_PATHS["model_3"]
)

feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device)
model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device)
def model4_infer(image):
    inputs = feature_extractor_4(image, return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model_4(**inputs)
    return outputs
def postprocess_logits_model4(outputs, class_names):
    logits = outputs.logits.cpu().numpy()[0]
    probabilities = softmax(logits)
    return {class_names[i]: probabilities[i] for i in range(len(class_names))}
register_model_with_metadata(
    "model_4", model4_infer, preprocess_256, postprocess_logits_model4, CLASS_NAMES["model_4"],
    display_name="SDXL + FLUX", contributor="cmckinle", model_path=MODEL_PATHS["model_4"]
)

clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device)
register_model_with_metadata(
    "model_5", clf_5, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5"],
    display_name="Vit Based", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5"]
)

clf_5b = pipeline("image-classification", model=MODEL_PATHS["model_5b"], device=device)
register_model_with_metadata(
    "model_5b", clf_5b, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5b"],
    display_name="Vit Based, Newer Dataset", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5b"]
)

image_processor_6 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_6"], use_fast=True)
model_6 = SwinForImageClassification.from_pretrained(MODEL_PATHS["model_6"]).to(device)
clf_6 = pipeline(model=model_6, task="image-classification", image_processor=image_processor_6, device=device)
register_model_with_metadata(
    "model_6", clf_6, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_6"],
    display_name="Swin, Midj + SDXL", contributor="ideepankarsharma2003", model_path=MODEL_PATHS["model_6"]
)

image_processor_7 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_7"], use_fast=True)
model_7 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_7"]).to(device)
clf_7 = pipeline(model=model_7, task="image-classification", image_processor=image_processor_7, device=device)
register_model_with_metadata(
    "model_7", clf_7, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_7"],
    display_name="ViT", contributor="temp", model_path=MODEL_PATHS["model_7"]
)

# Generic inference function

def infer(image: Image.Image, model_id: str, confidence_threshold: float = 0.75) -> dict:
    entry = MODEL_REGISTRY[model_id]
    img = entry.preprocess(image)
    try:
        result = entry.model(img)
        scores = entry.postprocess(result, entry.class_names)
        # Flatten output for Dataframe: include metadata and both class scores
        ai_score = scores.get(entry.class_names[0], 0.0)
        real_score = scores.get(entry.class_names[1], 0.0)
        label = "AI" if ai_score >= confidence_threshold else ("REAL" if real_score >= confidence_threshold else "UNCERTAIN")
        return {
            "Model": entry.display_name,
            "Contributor": entry.contributor,
            "HF Model Path": entry.model_path,
            "AI Score": ai_score,
            "Real Score": real_score,
            "Label": label
        }
    except Exception as e:
        return {
            "Model": entry.display_name,
            "Contributor": entry.contributor,
            "HF Model Path": entry.model_path,
            "AI Score": None,
            "Real Score": None,
            "Label": f"Error: {str(e)}"
        }

# Update predict_image to use all registered models in order

def predict_image(img, confidence_threshold):
    model_ids = [
        "model_1", "model_2", "model_3", "model_4", "model_5", "model_5b", "model_6", "model_7"
    ]
    results = [infer(img, model_id, confidence_threshold) for model_id in model_ids]
    return img, results

# Update predict_image_with_json to return results as a list of dicts

def predict_image_with_json(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength):
    if augment_methods:
        img_pil, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength)
    else:
        img_pil = img
    img_pil, results = predict_image(img_pil, confidence_threshold)
    img_np = np.array(img_pil)  # Convert PIL Image to NumPy array
    img_np_og = np.array(img)  # Convert PIL Image to NumPy array

    gradient_image = gradient_processing(img_np)  # Added gradient processing
    minmax_image = minmax_preprocess(img_np)  # Added MinMax processing

    # First pass - standard analysis
    ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True)

    # Second pass - enhanced visibility
    ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True)
    ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False)
    
    forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, minmax_image]
    
    # Prepare table rows for Dataframe (exclude model path)
    table_rows = [[
        r.get("Model", ""),
        r.get("Contributor", ""),
        r.get("AI Score", ""),
        r.get("Real Score", ""),
        r.get("Label", "")
    ] for r in results]
    return img_pil, forensics_images, table_rows, results

with gr.Blocks(css="#post-gallery { overflow: hidden !important;} .grid-wrap{ overflow-y: hidden !important;} .ms-gr-ant-welcome-icon{ height:unset !important;} .tabs{margin-top:10px;}") as iface:
    with ms.Application() as app:
        with antd.ConfigProvider():
            antdx.Welcome(
                icon="https://cdn-avatars.huggingface.co/v1/production/uploads/639daf827270667011153fbc/WpeSFhuB81DY-1TjNUmV_.png",
                title="Welcome to Project OpenSight",
                description="The OpenSight aims to be an open-source SOTA generated image detection model. This HF Space is not only an introduction but a educational playground for the public to evaluate and challenge current open source models.  **Space will be upgraded shortly; inference on all 6 models should take about 1.2~ seconds.** "
            )
            with gr.Tab("👀 Detection Models Eval / Playground"):
                gr.Markdown("# Open Source Detection Models Found on the Hub\n\n - **Space will be upgraded shortly;** inference on all 6 models should take about 1.2~ seconds once we're back on CUDA.\n - The **Community Forensics** mother of all detection models is now available for inference, head to the middle tab above this.\n - Lots of exciting things coming up, stay tuned!")
                
                with gr.Row():
                    with gr.Column(scale=1):
                        image_input = gr.Image(label="Upload Image to Analyze", sources=['upload', 'webcam'], type='pil')
                        with gr.Accordion("Settings (Optional)", open=False, elem_id="settings_accordion"):
                            augment_checkboxgroup = gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods")
                            rotate_slider = gr.Slider(0, 45, value=2, step=1, label="Rotate Degrees", visible=False)
                            noise_slider = gr.Slider(0, 50, value=4, step=1, label="Noise Level", visible=False)
                            sharpen_slider = gr.Slider(0, 50, value=11, step=1, label="Sharpen Strength", visible=False)
                            confidence_slider = gr.Slider(0.0, 1.0, value=0.75, step=0.05, label="Confidence Threshold")
                        inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider, noise_slider, sharpen_slider]
                        predict_button = gr.Button("Predict")
                        augment_button = gr.Button("Augment & Predict")
                        image_output = gr.Image(label="Processed Image", visible=False)


                    with gr.Column(scale=2):
                        # Use Gradio-native Dataframe to display results with headers
                        results_table = gr.Dataframe(
                            label="Model Predictions",
                            headers=["Model", "Contributor", "AI Score", "Real Score", "Label"],
                            datatype=["str", "str", "number", "number", "str"]
                        )
                        forensics_gallery = gr.Gallery(label="Post Processed Images", visible=True, columns=[4], rows=[2], container=False, height="auto", object_fit="contain", elem_id="post-gallery")
                        with gr.Accordion("Debug Output (Raw JSON)", open=False):
                            debug_json = gr.JSON(label="Raw Model Results")

                        outputs = [image_output, forensics_gallery, results_table, debug_json]
                
                # Show/hide rotate slider based on selected augmentation method
                augment_checkboxgroup.change(lambda methods: gr.update(visible="rotate" in methods), inputs=[augment_checkboxgroup], outputs=[rotate_slider])
                augment_checkboxgroup.change(lambda methods: gr.update(visible="add_noise" in methods), inputs=[augment_checkboxgroup], outputs=[noise_slider])
                augment_checkboxgroup.change(lambda methods: gr.update(visible="sharpen" in methods), inputs=[augment_checkboxgroup], outputs=[sharpen_slider])
                
                predict_button.click(
                    fn=predict_image_with_json, 
                    inputs=inputs, 
                    outputs=outputs
                )
                augment_button.click(  # Connect Augment button to the function
                    fn=predict_image_with_json, 
                    inputs=[
                        image_input, 
                        confidence_slider, 
                        gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], value=["rotate", "add_noise", "sharpen"], visible=False),  # Default values
                        rotate_slider, 
                        noise_slider, 
                        sharpen_slider
                    ], 
                    outputs=outputs
                )
            with gr.Tab("👑 Community Forensics Preview"):
                temp_space = gr.load("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview", src="spaces")
                # preview # no idea if this will work
            with gr.Tab("🥇 Leaderboard"):
                gr.Markdown("# AI Generated / Deepfake Detection Models Leaderboard: Soon™")
                

# Launch the interface
iface.launch()