Spaces:
Running
Running
import gradio as gr | |
import torch | |
from torch import LongTensor, FloatTensor | |
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
from threading import Thread | |
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1") | |
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1", torch_dtype=torch.bfloat16) | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: LongTensor, scores: FloatTensor, **kwargs) -> bool: | |
stop_ids=[29,0] | |
for stop_id in stop_ids: | |
if input_ids[0][-1]==stop_id: | |
return True | |
return False | |
def predict(message, history): | |
try: | |
history_transformer_format = history+[[message, ""]] | |
stop=StopOnTokens() | |
messages="".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) for item in history_transformer_format]) | |
model_inputs =tokenizer([messages], return_tensors="pt") | |
streamer=TextIteratorStreamer( | |
tokenizer, | |
timeout=10., | |
skip_prompt=True, | |
skip_special_tokens=True | |
) | |
generate_kwargs=dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
top_p=0.95, | |
top_k=1000, | |
temperature=1.0, | |
num_beams=1, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t=Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partical_message="" | |
for new_token in streamer: | |
if new_token !='<': | |
partical_message+=new_token | |
yield partical_message | |
except Exception as e: | |
yield "Sorry, I don't understand that." | |
gr.ChatInterface(predict).queue().launch() |