|
import numpy as np |
|
import torch |
|
import torchvision |
|
|
|
from scipy import ndimage |
|
|
|
|
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
|
|
|
|
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator |
|
|
|
|
|
from groundingdino.datasets import transforms as T |
|
from groundingdino.models import build_model |
|
from groundingdino.util.slconfig import SLConfig |
|
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap |
|
|
|
|
|
def load_grounding_dino_model(model_config_path, model_checkpoint_path, device): |
|
args = SLConfig.fromfile(model_config_path) |
|
args.device = device |
|
model = build_model(args) |
|
checkpoint = torch.load(model_checkpoint_path, map_location="cpu") |
|
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) |
|
print(load_res) |
|
_ = model.eval() |
|
return model |
|
|
|
|
|
def generate_caption(processor, blip_model, raw_image, device): |
|
|
|
inputs = processor(raw_image, return_tensors="pt").to(device, torch.float16) |
|
out = blip_model.generate(**inputs) |
|
caption = processor.decode(out[0], skip_special_tokens=True) |
|
return caption |
|
|
|
|
|
|
|
def transform_image(image_pil): |
|
|
|
transform = T.Compose( |
|
[ |
|
T.RandomResize([800], max_size=1333), |
|
T.ToTensor(), |
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
image, _ = transform(image_pil, None) |
|
return image |
|
|
|
|
|
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True): |
|
caption = caption.lower() |
|
caption = caption.strip() |
|
if not caption.endswith("."): |
|
caption = caption + "." |
|
|
|
with torch.no_grad(): |
|
outputs = model(image[None], captions=[caption]) |
|
logits = outputs["pred_logits"].cpu().sigmoid()[0] |
|
boxes = outputs["pred_boxes"].cpu()[0] |
|
logits.shape[0] |
|
|
|
|
|
logits_filt = logits.clone() |
|
boxes_filt = boxes.clone() |
|
filt_mask = logits_filt.max(dim=1)[0] > box_threshold |
|
logits_filt = logits_filt[filt_mask] |
|
boxes_filt = boxes_filt[filt_mask] |
|
logits_filt.shape[0] |
|
|
|
|
|
tokenlizer = model.tokenizer |
|
tokenized = tokenlizer(caption) |
|
|
|
pred_phrases = [] |
|
scores = [] |
|
for logit, box in zip(logits_filt, boxes_filt): |
|
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) |
|
if with_logits: |
|
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") |
|
else: |
|
pred_phrases.append(pred_phrase) |
|
scores.append(logit.max().item()) |
|
|
|
return boxes_filt, torch.Tensor(scores), pred_phrases |
|
|
|
|
|
|
|
def run_grounded_sam(input_image, |
|
text_prompt, |
|
task_type, |
|
box_threshold, |
|
text_threshold, |
|
iou_threshold, |
|
scribble_mode, |
|
sam, |
|
groundingdino_model, |
|
sam_predictor=None, |
|
sam_automask_generator=None, |
|
device="cuda"): |
|
|
|
global blip_processor, blip_model, inpaint_pipeline |
|
|
|
|
|
image = input_image["image"] |
|
scribble = input_image["mask"] |
|
size = image.size |
|
|
|
if sam_predictor is None: |
|
sam_predictor = SamPredictor(sam) |
|
sam_automask_generator = SamAutomaticMaskGenerator(sam) |
|
|
|
image_pil = image.convert("RGB") |
|
image = np.array(image_pil) |
|
|
|
if task_type == 'scribble': |
|
sam_predictor.set_image(image) |
|
scribble = scribble.convert("RGB") |
|
scribble = np.array(scribble) |
|
scribble = scribble.transpose(2, 1, 0)[0] |
|
|
|
|
|
labeled_array, num_features = ndimage.label(scribble >= 255) |
|
|
|
|
|
centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1)) |
|
centers = np.array(centers) |
|
|
|
point_coords = torch.from_numpy(centers) |
|
point_coords = sam_predictor.transform.apply_coords_torch(point_coords, image.shape[:2]) |
|
point_coords = point_coords.unsqueeze(0).to(device) |
|
point_labels = torch.from_numpy(np.array([1] * len(centers))).unsqueeze(0).to(device) |
|
if scribble_mode == 'split': |
|
point_coords = point_coords.permute(1, 0, 2) |
|
point_labels = point_labels.permute(1, 0) |
|
masks, _, _ = sam_predictor.predict_torch( |
|
point_coords=point_coords if len(point_coords) > 0 else None, |
|
point_labels=point_labels if len(point_coords) > 0 else None, |
|
mask_input = None, |
|
boxes = None, |
|
multimask_output = False, |
|
) |
|
elif task_type == 'automask': |
|
masks = sam_automask_generator.generate(image) |
|
else: |
|
transformed_image = transform_image(image_pil) |
|
|
|
if task_type == 'automatic': |
|
|
|
|
|
|
|
|
|
blip_processor = blip_processor or BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") |
|
blip_model = blip_model or BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to(device) |
|
text_prompt = generate_caption(blip_processor, blip_model, image_pil, device) |
|
print(f"Caption: {text_prompt}") |
|
|
|
|
|
boxes_filt, scores, pred_phrases = get_grounding_output( |
|
groundingdino_model, transformed_image, text_prompt, box_threshold, text_threshold |
|
) |
|
|
|
|
|
H, W = size[1], size[0] |
|
for i in range(boxes_filt.size(0)): |
|
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) |
|
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 |
|
boxes_filt[i][2:] += boxes_filt[i][:2] |
|
|
|
boxes_filt = boxes_filt.cpu() |
|
|
|
|
|
if task_type == 'seg' or task_type == 'inpainting' or task_type == 'automatic': |
|
sam_predictor.set_image(image) |
|
|
|
if task_type == 'automatic': |
|
|
|
print(f"Before NMS: {boxes_filt.shape[0]} boxes") |
|
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist() |
|
boxes_filt = boxes_filt[nms_idx] |
|
pred_phrases = [pred_phrases[idx] for idx in nms_idx] |
|
print(f"After NMS: {boxes_filt.shape[0]} boxes") |
|
print(f"Revise caption with number: {text_prompt}") |
|
|
|
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device) |
|
|
|
masks, _, _ = sam_predictor.predict_torch( |
|
point_coords = None, |
|
point_labels = None, |
|
boxes = transformed_boxes, |
|
multimask_output = False, |
|
) |
|
return masks |
|
else: |
|
print("task_type:{} error!".format(task_type)) |