File size: 16,192 Bytes
76e8a07
 
f2acee5
 
76e8a07
 
 
 
a1c0d1f
 
 
76e8a07
1b5f903
 
 
76e8a07
 
a1c0d1f
76e8a07
de7714f
1b5f903
76e8a07
d6bab4e
 
 
1b5f903
d6bab4e
 
 
 
de7714f
 
d6bab4e
1b5f903
de7714f
d6bab4e
 
de7714f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b5f903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6bab4e
1b5f903
 
 
 
 
 
 
 
 
 
d6bab4e
 
 
 
 
 
1b5f903
d6bab4e
 
 
 
 
 
 
 
 
 
1b5f903
d6bab4e
 
 
 
 
 
 
1b5f903
d6bab4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b5f903
d6bab4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7714f
 
1b5f903
 
d6bab4e
 
1b5f903
d6bab4e
 
 
 
1b5f903
d6bab4e
 
 
1b5f903
d6bab4e
 
 
1b5f903
d6bab4e
 
de7714f
 
 
 
 
 
 
80602df
de7714f
 
80602df
 
de7714f
80602df
 
 
 
de7714f
 
80602df
 
 
de7714f
80602df
 
 
 
de7714f
 
 
76e8a07
 
 
f3eb26f
 
76e8a07
f3eb26f
76e8a07
 
f3eb26f
f2acee5
f3eb26f
f2acee5
f3eb26f
76e8a07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1c0d1f
f3eb26f
76e8a07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d7bbfa
76e8a07
 
 
f2acee5
76e8a07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1c0d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
from doctr.models import detection_predictor, recognition_predictor
from doctr.io import DocumentFile
from surya.recognition import RecognitionPredictor
from surya.detection import DetectionPredictor
from PIL import Image
# from functools import lru_cache
from torchvision import models
from typing import List
from fastapi import HTTPException
from data_models import Citizenship
import json
import torchvision.transforms as transforms
import torch
import torch.nn as nn
import numpy as np
import cv2
import regex as re
import requests
# import os
import pickle


# Character sets
CHARACTER_NUM = "0123456789-"
CHARACTER_LETTER = ''' "()-./0123456789:?ABCDEFGHIKLMNOPQRSTUWYabcdefghijklmnoprstuvwyँंःअआइईउऊऋऌऍऎएऐऑऒओऔकखगघङचछजझञटठडढणतथदधनऩपफबभमयरऱलळऴवशषसह़ऽािीुूृॄॅॆेैॉॊोौ्ॐ॒॑॓॔क़ख़ग़ज़ड़ढ़फ़य़ॠॢ।॥०१२३४५६७८९॰ॱॲॻॼॽॾ^''' #"()-./0123456789:?ABCDEFGHIKLMNOPQRSTUWYabcdefghijklmnoprstuvwyँंःअआइईउऊऋऌऍऎएऐऑऒओऔकखगघङचछजझञटठडढणतथदधनऩपफबभमयरऱलळऴवशषसह़ऽािीुूृॄॅॆेैॉॊोौ्ॐ॒॑॓॔क़ख़ग़ज़ड़ढ़फ़य़ॠॢ।॥०१२३४५६७८९॰ॱॲॻॼॽॾ^"

# Model paths - these should be configurable
MODEL_PATHS = {
    'dev_digits': "models/devnagri_digits_20k_v2.pth",
    'roman_digits': "models/roman_digits_20k_v5.pth",
    'dev_letter': "models/small_devnagari_letter.pth",
    'classify_ne': "models/nepali_english_classifier.pth"
}


# Use GPU if available
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class ResNetClassifier(nn.Module):
    def __init__(self, num_classes=2):
        super(ResNetClassifier, self).__init__()
        self.base_model = models.resnet50(weights='IMAGENET1K_V2')  # Pre-trained ResNet-50
        for param in self.base_model.parameters():
            param.requires_grad = False  # Freeze base model
        num_ftrs = self.base_model.fc.in_features
        self.base_model.fc = nn.Sequential(
            nn.Linear(num_ftrs, 128),
            nn.ReLU(),
            nn.Linear(128, num_classes)
        )
    
    def forward(self, x):
        return self.base_model(x)

# Define the CRNN model
class CRNN(nn.Module):
    def __init__(self, num_classes, input_size=(1, 64, 256)):
        super(CRNN, self).__init__()

        self.conv_block = nn.Sequential(
            nn.Conv2d(input_size[0], 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),  # 64x128

            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),  # 32x64

            nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2),  # 16x32

            nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2)   # 8x16
        )

        # Dimensions after conv: batch x 512 x 8 x 16
        feature_height = input_size[1] // 16  # 64 -> 4 pools → 64/2^4 = 4

        self.rnn = nn.LSTM(
            input_size=512 * feature_height,  # 512 * 4 = 2048
            hidden_size=128,
            num_layers=1,
            bidirectional=True,
            dropout=0.3,
            batch_first=True
        )

        self.fc = nn.Linear(256, num_classes)  # 256 for bidirectional

    def forward(self, x):
        x = self.conv_block(x)  # (B, 512, H=4, W=16)
        b, c, h, w = x.size()
        x = x.permute(0, 3, 1, 2)  # (B, W, C, H)
        x = x.contiguous().view(b, w, c * h)  # (B, seq_len, input_size)

        x, _ = self.rnn(x)  # (B, seq_len, 512)
        x = self.fc(x)      # (B, seq_len, num_classes)
        return x

class OCRModelManager:
    """
    Singleton class to manage OCR models and prevent repeated loading
    """
    _instance = None
    
    def __new__(cls):
        if cls._instance is None:
            cls._instance = super(OCRModelManager, cls).__new__(cls)
            cls._instance.models = {}
            cls._instance.char_maps = {}
            cls._instance.transforms = {}
            cls._instance.initialize_transforms()
            # Initialize doctr model once
            cls._instance.roman_letter_model = recognition_predictor(pretrained=True)
        return cls._instance
    
    def initialize_transforms(self):
        """Initialize standard transforms used across models"""
        self.transforms['standard'] = transforms.Compose([
            transforms.Resize((64, 256)),
            transforms.ToTensor(),
            transforms.Normalize((0.5,), (0.5,))
        ])
    
    def get_model(self, model_type, character_set):
        """Get or load a model based on type"""
        if model_type not in self.models:
            if model_type not in MODEL_PATHS:
                raise ValueError(f"Unknown model type: {model_type}")
            
            # Create character to ID mapping
            self.char_maps[model_type] = {
                'id_to_char': {i: c for i, c in enumerate(character_set)},
                'char_to_id': {c: i for i, c in enumerate(character_set)}
            }
            
            # Initialize and load model
            model = CRNN(num_classes=len(character_set))
            model.load_state_dict(torch.load(MODEL_PATHS[model_type], map_location=DEVICE))
            model.eval()  # Set to evaluation mode
            model = model.to(DEVICE)
            self.models[model_type] = model
            
        return self.models[model_type], self.char_maps[model_type]

    def preprocess_image(self, image_path, model_type):
        """Preprocess image based on model type"""
        image = Image.open(image_path).convert('L')
        
        # Apply specific preprocessing based on model type
        if model_type != 'dev_letter':
            # Binarize the image for digit models
            image = image.point(lambda x: 0 if x < 128 else 255, 'L')
        
        # Resize to model input size
        image = image.resize((256, 64))
        
        # Invert colors for dev_letter model
        if model_type == 'dev_letter':
            image = Image.eval(image, lambda x: 255 - x)
        
        # Apply transforms
        tensor_image = self.transforms['standard'](image).unsqueeze(0).to(DEVICE)
        
        return tensor_image
    
    def predict(self, image_path, model_type, character_set):
        """Make a prediction using the specified model"""
        # Get or load model
        model, char_map = self.get_model(model_type, character_set)
        
        # Preprocess image
        tensor_image = self.preprocess_image(image_path, model_type)
        
        # Run inference
        with torch.no_grad():
            output = model(tensor_image)
            output = output.permute(1, 0, 2)  # (seq_len, batch_size, num_classes)
            _, predicted = output.max(2)
            predicted = predicted.permute(1, 0)  # (batch_size, seq_len)
            
            # Convert tokens to string
            predicted_str = ''.join([char_map['id_to_char'][i] for i in predicted[0].cpu().numpy()])
        
        return predicted_str
    
    def predict_roman_letter(self, image_path):
        """Predict using the doctr model for Roman letters"""
        img = DocumentFile.from_images(image_path)
        result = self.roman_letter_model(img)
        # print(result)
        return result[0][0]
    
    


# Initialize the model manager as a singleton
ocr_manager = OCRModelManager()

# Simplified API functions
def dev_number(image_path):
    """Recognize Devanagari digits in an image"""
    return ocr_manager.predict(image_path, 'dev_digits', CHARACTER_NUM)

def roman_number(image_path):
    """Recognize Roman digits in an image"""
    return ocr_manager.predict(image_path, 'roman_digits', CHARACTER_NUM)

def dev_letter(image_path):
    """Recognize Devanagari letters in an image"""
    return ocr_manager.predict(image_path, 'dev_letter', CHARACTER_LETTER)

def roman_letter(image_path):
    """Recognize Roman letters in an image"""
    return ocr_manager.predict_roman_letter(image_path)


def predict_ne(image_path, device="cpu"):
        # load label encoder
        
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        model = ResNetClassifier(num_classes=4).to(device)
        # model.eval()
        transform = transforms.Compose([
        transforms.Resize(256),                      # Resize shorter side to 256
        transforms.CenterCrop(224),                  # Crop center 224x224 patch
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                            std=[0.229, 0.224, 0.225])
            ])

        image = Image.open(image_path).convert('RGB')
        image_tensor = transform(image).unsqueeze(0).to(device)
        
        # loading model weights/state_dict
        model.load_state_dict(torch.load('models/dev_roman_classifier.pth', map_location=device))
        model.eval()

        # loading label encoder
        with open('models/dev_roman_label_encoder.pkl', 'rb') as f:
            le = pickle.load(f)
        with torch.no_grad():
            output = model(image_tensor)
            _, predicted = torch.max(output, 1)
        return le.inverse_transform([predicted.item()])[0]

doctr_detector = None
surya_recognition_predictor = None
surya_detection_predictor = None
def initialize_detector():
    global doctr_detector, surya_recognition_predictor, surya_detection_predictor
    if doctr_detector is None:
        doctr_detector = detection_predictor('db_mobilenet_v3_large', pretrained=True, assume_straight_pages=True, preserve_aspect_ratio=True)
    if surya_recognition_predictor is None:
        surya_recognition_predictor = RecognitionPredictor()
    if surya_detection_predictor is None:
        surya_detection_predictor = DetectionPredictor()
    return doctr_detector, surya_recognition_predictor, surya_detection_predictor

def get_cleaned_boxes(out, page):
    h, w, _ = page.shape
    cleaned_boxes = []    
    for box in out[0]['words']:
        coords = np.array(box[:4])  # 4 corner points (normalized)
        coords *= np.array([w, h, w, h])        
        x1, y1, x2, y2 = coords
        x_thresh = 0.7 * page.shape[1]
        y_thresh = 0.3* page.shape[0]
        if x1> x_thresh and y1 < y_thresh:            
            continue
        if (x2 - x1) * (y2 - y1) < 100:            
            continue
        cleaned_boxes.append(coords.astype('int'))    
    return cleaned_boxes
# The most inefficient code in existence
def merge_boxes_same_line(boxes, y_thresh=5, x_thresh=60):    
    # Sort boxes first by x and then by y
    boxes = sorted(boxes, key=lambda b: (b[1],b[0]))    
    # Trying make all boxes within certain threshold have the same y coordinate for sorting
    # Threshold for grouping rows
    row_threshold = 15

    aligned_boxes = []
    current_row = []
    current_y = boxes[0][1]

    for box in boxes:
        x1, y1, x2, y2 = box
        if abs(y1 - current_y) <= row_threshold:
            current_row.append(box)
        else:
            # Align all y1 and y2 in the row
            avg_y1 = int(np.mean([b[1] for b in current_row]))
            avg_y2 = int(np.mean([b[3] for b in current_row]))
            aligned_boxes.extend([(b[0], avg_y1, b[2], avg_y2) for b in current_row])
            current_row = [box]
            current_y = y1

    # Handle the last row
    if current_row:
        avg_y1 = int(np.mean([b[1] for b in current_row]))
        avg_y2 = int(np.mean([b[3] for b in current_row]))
        aligned_boxes.extend([(b[0], avg_y1, b[2], avg_y2) for b in current_row])
    # After aligning all boxes on y axis, re sort them 
    aligned_boxes = sorted(aligned_boxes, key=lambda b: (b[1],b[0])) 

    # Merge adjacent boxes within certain threshold
    merged = []    
    p_x1, p_y1, p_x2, p_y2 = aligned_boxes[0]
    for i in range(1,len(aligned_boxes)):        
        x1, y1, x2, y2 = aligned_boxes[i]
        if abs(p_y1 - y1) < y_thresh and abs(x1 - p_x2) < x_thresh:   
            p_x1 = min(p_x1, x1)
            p_y1 = min(p_y1, y1)
            p_x2 = max(p_x2, x2)
            p_y2 = max(p_y2, y2)
        else:
            merged.append([p_x1, p_y1, p_x2, p_y2])
            p_x1, p_y1, p_x2, p_y2 = x1, y1, x2, y2
    
    merged.append([p_x1, p_y1, p_x2, p_y2])

    return np.array(merged)

def ocr_citizenship(image_path: str) -> List[List[str]]:
    doctr_detector, surya_recognition_predictor, surya_detection_predictor = initialize_detector()
    page = cv2.imread(image_path)
    page = cv2.convertScaleAbs(page, alpha=1.5, beta=0)
    page = cv2.resize(page, (720,480))
    out = doctr_detector([page]) 
    cleaned_boxes = get_cleaned_boxes(out,page)
    merged = merge_boxes_same_line(cleaned_boxes)
    pattern = r'(नेपाली\s*नागरिकताको\s*प्रमाणपत्र){e<=6}'
    prev_y = 0
    start = False
    first_start = True
    y_thresh = 5
    text_combine = ''
    full_result = []
    line_result = []

    for boxes in merged[3:]:    
        x1, y1, x2, y2 = boxes[0],boxes[1],boxes[2],boxes[3]
        crop = page[y1:y2,x1:x2]
        pil_image = Image.fromarray(crop).convert('L')

        # OCR PART
        langs = ["en",'ne']
        predictions = surya_recognition_predictor(images=[pil_image], langs=[langs],det_predictor=surya_detection_predictor)
        text_combo = ''
        for text_line in predictions[0].text_lines:
            text_combo = text_combo + " " + text_line.text.strip()
        text_combo = text_combo.strip()
        # OCR PART END

        if not start:        
            match = re.search(pattern, text_combo)
            if match: 
                start = True
            continue
        if first_start:
            first_start = False
            prev_y = boxes[1]
        if y1 - prev_y > y_thresh:                        
            full_result.append(line_result)        
            line_result = []
        line_result.append(text_combo)
        prev_y = boxes[1] 
    
    return full_result

PARSE_PROMPT = "You are a parsing agent. Your task is to generate a json response from the given text corpus."
def create_local_model(message, base_model):
    try:
        ollama_endpoint = "api/chat"
        url = f"https://aioverlords-amnil-internal-ollama.hf.space/proxy/{ollama_endpoint}"

        # Data to send in the POST request
        data = {
            "data": {
                "model": "aisingapore/Llama-SEA-LION-v3-8B-IT",
                "messages": message,
                "stream": False,
                "format": base_model.model_json_schema()
            }
        }

        response = requests.post(url, json=data)
        # Check the response
        if response.status_code == 200:
            print(f"Request Success:", response.json())
            return json.loads(response.json()["message"]["content"])
            # return response.json()
        else:
            print(f"Request Error:", response.status_code, response.text)
            raise HTTPException(status_code=response.status_code, detail=response.text)
    except HTTPException as http_exec:
        raise http_exec
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))
    
def perform_citizenship_ocr(image_path):
    try:        
        unparsed_result = ocr_citizenship(image_path)
        message = [
            {"role": "system", "content": PARSE_PROMPT},
            {"role": "user", "content": f"Given Text: \n{unparsed_result}"},
        ]
        return create_local_model(message, Citizenship)        
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))