File size: 7,764 Bytes
d6bab4e
 
1b5f903
d6bab4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b5f903
d6bab4e
 
 
 
a1c0d1f
1b5f903
d6bab4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b5f903
d6bab4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b5f903
d6bab4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7714f
 
d6bab4e
 
 
 
 
 
 
 
1b5f903
 
d6bab4e
 
1b5f903
 
 
d6bab4e
 
1b5f903
 
 
d6bab4e
 
1b5f903
 
 
d6bab4e
 
 
de7714f
 
 
 
 
 
 
 
 
 
 
 
 
76e8a07
 
 
 
 
a1c0d1f
76e8a07
a1c0d1f
76e8a07
d6bab4e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# # ! pip uninstall -y tensorflow
# # ! pip install "python-doctr[torch,viz]"

# from fastapi import FastAPI, UploadFile, File
# from fastapi.responses import JSONResponse
# from utils import dev_number, roman_number, dev_letter, roman_letter
# import tempfile

# app = FastAPI()


# @app.post("/ocr_dev_number/")
# async def extract_dev_number(image: UploadFile = File(...)):
#     # Save uploaded image temporarily
#     with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
#         content = await image.read()
#         tmp.write(content)
#         tmp_path = tmp.name

#     # predict the image
#     predicted_str = dev_number(tmp_path)
#     # Return result as JSON
#     return JSONResponse(content={"predicted_str": predicted_str})

# @app.post("/ocr_roman_number/")
# async def extract_roman_number(image: UploadFile = File(...)):
#     # Save uploaded image temporarily
#     with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
#         content = await image.read()
#         tmp.write(content)
#         tmp_path = tmp.name

#     # predict the image
#     predicted_str = roman_number(tmp_path)
#     # Return result as JSON
#     return JSONResponse(content={"predicted_str": predicted_str})

# @app.post("/ocr_dev_letter/")
# async def extract_dev_letter(image: UploadFile = File(...)):
#     # Save uploaded image temporarily
#     with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
#         content = await image.read()
#         tmp.write(content)
#         tmp_path = tmp.name

#     # predict the image
#     predicted_str = dev_letter(tmp_path)
#     # Return result as JSON
#     return JSONResponse(content={"predicted_str": predicted_str})

# @app.post("/ocr_roman_letter/")
# async def extract_roman_letter(image: UploadFile = File(...)):
#     # Save uploaded image temporarily
#     with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
#         content = await image.read()
#         tmp.write(content)
#         tmp_path = tmp.name

#     # predict the image
#     predicted_str = roman_letter(tmp_path)
#     # Return result as JSON
#     return JSONResponse(content={"predicted_str": predicted_str})


import os
import tempfile
from typing import Literal
from fastapi import FastAPI, UploadFile, File, HTTPException, Depends
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import shutil

# Import from optimized utils
from utils import dev_number, roman_number, dev_letter, roman_letter, predict_ne, perform_citizenship_ocr

app = FastAPI(
    title="OCR API",
    description="API for optical character recognition of Roman and Devanagari text",
    version="1.0.0"
)

class OCRResponse(BaseModel):
    """Response model for OCR endpoints"""
    predicted_str: str
    confidence: float = None  # Optional confidence field

# Helper function to handle file uploads consistently
async def save_upload_file_tmp(upload_file: UploadFile) -> str:
    """Save an upload file to a temporary file and return the path"""
    try:
        # Create a temporary file with the appropriate suffix
        suffix = os.path.splitext(upload_file.filename)[1] if upload_file.filename else ".png"
        with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
            # Get the file content
            content = await upload_file.read()
            # Write content to temporary file
            tmp.write(content)
            tmp_path = tmp.name
        return tmp_path
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error processing file: {str(e)}")

# Generic OCR function that can be reused across endpoints
async def process_ocr_request(
    image: UploadFile = File(...),
    ocr_function=None
):
    """Process an OCR request using the specified OCR function"""
    if not ocr_function:
        raise HTTPException(status_code=500, detail="OCR function not specified")
    
    try:
        # Save uploaded image temporarily
        tmp_path = await save_upload_file_tmp(image)
        
        # Process the image with the specified OCR function
        result = ocr_function(tmp_path)
        
        # Clean up the temporary file
        os.unlink(tmp_path)
        
        # Handle different types of results (string vs doctr output)
        if isinstance(result, str):
            return JSONResponse(content={"predicted_str": result})
        else:
            # For doctr results, extract the text (adapt as needed based on doctr output format)
            # This assumes roman_letter function returns a structure with extractable text
            extracted_text = " ".join([block.value for page in result.pages for block in page.blocks])
            return JSONResponse(content={"predicted_str": extracted_text})
            
    except Exception as e:
        # Ensure we clean up even if there's an error
        if 'tmp_path' in locals() and os.path.exists(tmp_path):
            os.unlink(tmp_path)
        raise HTTPException(status_code=500, detail=f"OCR processing error: {str(e)}")

# Endpoints with minimal duplication
@app.post("/ocr/", summary="Generic OCR endpoint")
async def extract_text(
    image: UploadFile = File(...),
    model_type: Literal["dev_number", "roman_number", "dev_letter", "roman_letter"] = "roman_letter"
):
    """
    Generic OCR endpoint that can handle any supported recognition type.
    
    - **image**: Image file to process
    - **model_type**: Type of OCR to perform
    """
    ocr_functions = {
        "dev_number": dev_number,
        "roman_number": roman_number,
        "dev_letter": dev_letter,
        "roman_letter": roman_letter,
        
    }
    
    if model_type not in ocr_functions:
        raise HTTPException(status_code=400, detail=f"Invalid model type: {model_type}")
    
    return await process_ocr_request(image, ocr_functions[model_type])

# For backward compatibility, keep the original endpoints
@app.post("/ocr_dev_number/")
async def extract_dev_number(image: UploadFile = File(...)):
    """Extract Devanagari numbers from an image"""
    return await process_ocr_request(image, dev_number)

@app.post("/ocr_roman_number/")
async def extract_roman_number(image: UploadFile = File(...)):
    """Extract Roman numbers from an image"""
    return await process_ocr_request(image, roman_number)

@app.post("/ocr_dev_letter/")
async def extract_dev_letter(image: UploadFile = File(...)):
    """Extract Devanagari letters from an image"""
    return await process_ocr_request(image, dev_letter)

@app.post("/ocr_roman_letter/")
async def extract_roman_letter(image: UploadFile = File(...)):
    """Extract Roman letters from an image"""
    return await process_ocr_request(image, roman_letter)

@app.post("/predict_ne")
async def classify_ne(image: UploadFile = File(...)):
    """Predict Named Entities from an image"""
    # Placeholder for Named Entity Recognition logic
    image_path  = await save_upload_file_tmp(image)
    prediction = predict_ne(
        image_path=image_path,
        # model="models/nepali_english_classifier.pth",  # Update with actual model path
        device="cpu"  # or "cpu"
    )

    # Implement the logic as per your requirements
    return JSONResponse(content={"predicted": prediction})

@app.post("/ocr_citizenship/")
async def ocr_citizenship(image: UploadFile = File(...)):
    """OCR the provided Nepali Citizenship card"""
    image_path  = await save_upload_file_tmp(image)
    prediction = perform_citizenship_ocr(
        image_path=image_path,
    )    
    return JSONResponse(content=prediction)
# Health check endpoint
@app.get("/health")
async def health_check():
    """Health check endpoint to verify the API is running"""
    return {"status": "healthy"}