Spaces:
Configuration error
Configuration error
import gradio as gr | |
from PIL import Image | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
from torchvision import models, transforms | |
from pytorch_grad_cam import GradCAM | |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget | |
from pytorch_grad_cam.utils.image import show_cam_on_image | |
import io | |
import csv | |
import datetime | |
# Set device | |
device = torch.device("cpu") | |
# Load model | |
model = models.resnet50(weights=None) | |
model.fc = torch.nn.Linear(model.fc.in_features, 2) | |
model.load_state_dict(torch.load("resnet50_dr_classifier.pth", map_location=device)) | |
model.to(device) | |
model.eval() | |
# Grad-CAM setup | |
target_layer = model.layer4[-1] | |
cam = GradCAM(model=model, target_layers=[target_layer]) | |
# Preprocessing | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], | |
[0.229, 0.224, 0.225]) | |
]) | |
# In-memory log list | |
prediction_log = [["timestamp", "image_name", "prediction", "confidence"]] | |
# Logging function | |
def log_prediction(filename, prediction, confidence): | |
timestamp = datetime.datetime.now().isoformat() | |
row = [timestamp, filename, prediction, f"{confidence:.4f}"] | |
prediction_log.append(row) | |
print("⏺ Logged:", row) | |
# Prediction function | |
def predict_retinopathy(image): | |
img = image.convert("RGB").resize((224, 224)) | |
img_tensor = transform(img).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
output = model(img_tensor) | |
probs = F.softmax(output, dim=1) | |
pred = torch.argmax(probs, dim=1).item() | |
confidence = probs[0][pred].item() | |
label = "Diabetic Retinopathy (DR)" if pred == 0 else "No DR" | |
# Grad-CAM | |
rgb_img_np = np.array(img).astype(np.float32) / 255.0 | |
rgb_img_np = np.ascontiguousarray(rgb_img_np) | |
grayscale_cam = cam(input_tensor=img_tensor, targets=[ClassifierOutputTarget(pred)])[0] | |
cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True) | |
# Log it | |
filename = getattr(image, "filename", "uploaded_image") | |
log_prediction(filename, label, confidence) | |
cam_pil = Image.fromarray(cam_image) | |
return cam_pil, f"{label} (Confidence: {confidence:.2f})" | |
# CSV download function | |
def download_logs(): | |
output = io.StringIO() | |
writer = csv.writer(output) | |
writer.writerows(prediction_log) | |
output.seek(0) | |
return gr.File.update(value=io.BytesIO(output.getvalue().encode()), filename="prediction_logs.csv") | |
# Build the UI with Gradio Blocks | |
with gr.Blocks() as demo: | |
gr.Markdown("## 🧠 Diabetic Retinopathy Detection with Grad-CAM & Logging") | |
with gr.Row(): | |
image_input = gr.Image(type="pil", label="Upload Retinal Image") | |
cam_output = gr.Image(type="pil", label="Grad-CAM") | |
prediction_output = gr.Text(label="Prediction") | |
with gr.Row(): | |
run_button = gr.Button("Submit") | |
download_button = gr.Button("📥 Download Logs") | |
download_file = gr.File(label="Your Log File", interactive=False) | |
run_button.click( | |
fn=predict_retinopathy, | |
inputs=image_input, | |
outputs=[cam_output, prediction_output] | |
) | |
download_button.click( | |
fn=download_logs, | |
inputs=[], | |
outputs=download_file | |
) | |
demo.launch() | |