Spaces:
Configuration error
Configuration error
import gradio as gr | |
from PIL import Image | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
from torchvision import models, transforms | |
from pytorch_grad_cam import GradCAM | |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget | |
from pytorch_grad_cam.utils.image import show_cam_on_image | |
import os | |
import csv | |
import datetime | |
import zipfile | |
from gradio.routes import Request | |
# π Secret key | |
ADMIN_KEY = "Diabetes_Detection" | |
# Device | |
device = torch.device("cpu") | |
# Load model | |
model = models.resnet50(weights=None) | |
model.fc = torch.nn.Linear(model.fc.in_features, 2) | |
model.load_state_dict(torch.load("resnet50_dr_classifier.pth", map_location=device)) | |
model.to(device) | |
model.eval() | |
# Grad-CAM setup | |
target_layer = model.layer4[-1] | |
cam = GradCAM(model=model, target_layers=[target_layer]) | |
# Preprocessing | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], | |
[0.229, 0.224, 0.225]) | |
]) | |
# Folders | |
image_folder = "collected_images" | |
os.makedirs(image_folder, exist_ok=True) | |
csv_log_path = "prediction_logs.csv" | |
if not os.path.exists(csv_log_path): | |
with open(csv_log_path, mode="w", newline="") as f: | |
writer = csv.writer(f) | |
writer.writerow(["timestamp", "image_filename", "prediction", "confidence"]) | |
# π Prediction | |
def predict_retinopathy(image): | |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") | |
img = image.convert("RGB").resize((224, 224)) | |
img_tensor = transform(img).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
output = model(img_tensor) | |
probs = F.softmax(output, dim=1) | |
pred = torch.argmax(probs, dim=1).item() | |
confidence = probs[0][pred].item() | |
label = "Diabetic Retinopathy (DR)" if pred == 0 else "No DR" | |
# Grad-CAM | |
rgb_img_np = np.array(img).astype(np.float32) / 255.0 | |
rgb_img_np = np.ascontiguousarray(rgb_img_np) | |
grayscale_cam = cam(input_tensor=img_tensor, targets=[ClassifierOutputTarget(pred)])[0] | |
cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True) | |
cam_pil = Image.fromarray(cam_image) | |
# Save image + log | |
image_filename = f"{timestamp}_{label.replace(' ', '_')}.png" | |
image_path = os.path.join(image_folder, image_filename) | |
image.save(image_path) | |
with open(csv_log_path, mode="a", newline="") as f: | |
writer = csv.writer(f) | |
writer.writerow([timestamp, image_filename, label, f"{confidence:.4f}"]) | |
return cam_pil, f"{label} (Confidence: {confidence:.2f})" | |
# π Admin downloads | |
def download_csv(): | |
return csv_log_path | |
def download_dataset_zip(): | |
zip_filename = "dataset_bundle.zip" | |
with zipfile.ZipFile(zip_filename, "w") as zipf: | |
zipf.write(csv_log_path, arcname="prediction_logs.csv") | |
for fname in os.listdir(image_folder): | |
fpath = os.path.join(image_folder, fname) | |
zipf.write(fpath, arcname=os.path.join("images", fname)) | |
return zip_filename | |
# β Admin check (query param) | |
def is_admin(request: Request): | |
return request and request.query_params.get("admin") == ADMIN_KEY | |
# π App | |
with gr.Blocks() as demo: | |
gr.Markdown("## π§ Diabetic Retinopathy Detection with Grad-CAM") | |
with gr.Row(): | |
image_input = gr.Image(type="pil", label="Upload Retinal Image") | |
cam_output = gr.Image(type="pil", label="Grad-CAM") | |
prediction_output = gr.Text(label="Prediction") | |
run_button = gr.Button("Submit") | |
run_button.click( | |
fn=predict_retinopathy, | |
inputs=image_input, | |
outputs=[cam_output, prediction_output] | |
) | |
# π Hidden admin section | |
with gr.Column(visible=False) as admin_section: | |
gr.Markdown("### π Private Downloads (Rodiyah Only)") | |
with gr.Row(): | |
download_csv_btn = gr.Button("π Download CSV Log") | |
download_zip_btn = gr.Button("π¦ Download Dataset ZIP") | |
csv_file = gr.File() | |
zip_file = gr.File() | |
# β Reveal only if correct ?admin=Diabetes_Detection in URL | |
demo.load( | |
fn=lambda req: gr.update(visible=True) if is_admin(req) else gr.update(visible=False), | |
inputs=[], | |
outputs=admin_section, | |
queue=False, | |
api_name=False, | |
request=True # β Required to pass HTTP request into lambda | |
) | |
download_csv_btn.click(fn=download_csv, inputs=[], outputs=csv_file) | |
download_zip_btn.click(fn=download_dataset_zip, inputs=[], outputs=zip_file) | |
demo.launch() | |