import re import json import gradio as gr # Your model’s raw NER output (we trust these start/end indices) ner = [ { 'start': 11, 'end': 29, 'text': 'Home Visits Survey', 'label': 'named dataset', 'score': 0.9947463870048523 } ] # Your model’s raw RE output relations = { 'Home Visits Survey': [ {'source': 'Home Visits Survey', 'relation': 'data geography', 'target': 'Jordan', 'score': 0.6180844902992249}, {'source': 'Home Visits Survey', 'relation': 'version', 'target': 'Round II', 'score': 0.9688164591789246}, {'source': 'Home Visits Survey', 'relation': 'acronym', 'target': 'HV', 'score': 0.9140607714653015}, {'source': 'Home Visits Survey', 'relation': 'author', 'target': 'UNHCR', 'score': 0.7762154340744019}, {'source': 'Home Visits Survey', 'relation': 'author', 'target': 'World Food Programme', 'score': 0.6582539677619934}, {'source': 'Home Visits Survey', 'relation': 'reference year', 'target': '2013', 'score': 0.524115264415741}, {'source': 'Home Visits Survey', 'relation': 'publication year', 'target': '2014', 'score': 0.6853994131088257}, {'source': 'Home Visits Survey', 'relation': 'data description', 'target': 'detailed socio-economic, health, and protection data', 'score': 0.6544178128242493}, ] } # Exact sample text SAMPLE_TEXT = """The Jordan Home Visits Survey, Round II (HV), was carried out by UNHCR and the World Food Programme between November 2013 and September 2014. Through in-home visits to Syrian refugee households in Jordan, it gathered detailed socio-economic, health, and protection data—each household tagged with a unique ID to allow longitudinal tracking.""" def highlight_text(text): entities = [] # 1) NER spans for ent in ner: entities.append({ "entity": ent["label"], "start": ent["start"], "end": ent["end"], }) # 2) RE spans for rel_list in relations.values(): for r in rel_list: for m in re.finditer(re.escape(r["target"]), text): entities.append({ "entity": r["relation"], "start": m.start(), "end": m.end(), }) return {"text": text, "entities": entities} def get_model_predictions(): return json.dumps({"ner": ner, "relations": relations}, indent=2) with gr.Blocks() as demo: gr.Markdown("## Data Use Detector\n" "Edit the sample text, then click **Highlight** to annotate entities, or **Get Model Predictions** to see the raw JSON.") txt_in = gr.Textbox(label="Input Text", lines=4, value=SAMPLE_TEXT) highlight_btn = gr.Button("Highlight") txt_out = gr.HighlightedText(label="Annotated Entities") get_pred_btn = gr.Button("Get Model Predictions") ner_rel_box = gr.Textbox( label="Model Predictions (JSON)", lines=15, value="", interactive=False ) # Only trigger highlighting on click highlight_btn.click(fn=highlight_text, inputs=txt_in, outputs=txt_out) # Only show preds on click get_pred_btn.click(fn=get_model_predictions, inputs=None, outputs=ner_rel_box) if __name__ == "__main__": demo.launch()