Spaces:
Running
Running
File size: 6,151 Bytes
460c05d 76d630f 460c05d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import os
import uuid
import argparse
argparser = argparse.ArgumentParser()
argparser.add_argument("--port", type=int, default=1239, help="Port number for the local server")
argparser.add_argument("--cuda_device", type=str, default='0', help="Cuda devices to use. Default is 0")
argparser.add_argument("--static_folder", type=str, default='static', help="Folder to store static files")
args = argparser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = ''
import gradio as gr
from pathlib import Path
import numpy as np
import torch
from LInK.CAD import create_3d_html
import numpy as np
from LInK.CurveUtils import uniformize
import torch
import matplotlib.pyplot as plt
from LInK.Solver import solve_rev_vectorized_batch_CPU
# turn off gradient computation
torch.set_grad_enabled(False)
results = np.load('alpha_res.npy',allow_pickle=True)
alphabet_test = np.load('alphabet.npy')
zs_ = np.load('alpha_z.npy',allow_pickle=True)
curves__ = torch.tensor(alphabet_test).float()
curves__ = curves__ - curves__.mean(1).unsqueeze(1)
max_idx = torch.square(curves__).sum(-1).argmax(dim=1)
theta = torch.atan2(curves__[torch.arange(curves__.shape[0]),max_idx,1],curves__[torch.arange(curves__.shape[0]),max_idx,0]).numpy()
curves_ = []
for i in range(len(results)):
curves_.append(results[i][-1])
curves_ = torch.tensor(curves_).float()
curves_ = uniformize(curves_,200)
curves_ = curves_ - curves_.mean(1).unsqueeze(1)
max_idx = torch.square(curves_).sum(-1).argmax(dim=1)
theta2 = torch.atan2(curves_[torch.arange(curves_.shape[0]),max_idx,1],curves_[torch.arange(curves_.shape[0]),max_idx,0]).numpy()
alphas = []
letter_heights = []
letter_centers = []
letter_widths = []
for i in range(len(results)):
A, x0, node_type, start_theta, end_theta, tr = results[i][0]
alpha = theta[i] - theta2[i]
if i == 21:
alpha -= np.pi/2.5
if i == 7:
alpha -= np.pi/3
if i == 4:
alpha += np.pi/36
alphas.append(alpha)
R = np.array([[np.cos(alpha), -np.sin(alpha)],[np.sin(alpha), np.cos(alpha)]]).squeeze()
transformed_curve = (R@results[i][-1].T).T
CD,OD,_ = results[i][1]
sol = solve_rev_vectorized_batch_CPU(A[None],x0[None],node_type[None],np.linspace(start_theta,end_theta,2000))[0]
sol_curve = (R@sol[-1].T).T
n_left = len(results) - i
n_left_row = 10 - i%10
letter_heights.append(transformed_curve[:,1].max()-transformed_curve[:,1].min())
letter_widths.append(transformed_curve[:,0].max()-transformed_curve[:,0].min())
letter_centers.append([(transformed_curve[:,0].max() + transformed_curve[:,0].min())/2,(transformed_curve[:,1].max() + transformed_curve[:,1].min())/2])
alphas = np.array(alphas)
letter_heights = np.array(letter_heights)
letter_centers = np.array(letter_centers)
letter_widths = np.array(letter_widths)
alphabet_dict = {'A':0,'B':1,'C':2,'D':3,'E':4,'F':5,'G':6,'H':7,'I':8,'J':9,'K':10,'L':11,'M':12,'N':13,'O':14,'P':16,'Q':15,'R':17,'S':18,'T':19,'U':20,'V':21,'W':22,'X':23,'Y':24,'Z':25}
def create_mech(target_text):
target_text = target_text.replace(' ','').upper()
target_height = 1.
spacing = 0.2
letters = [alphabet_dict[l] for l in target_text]
translations = []
scaling = []
transformed_curves = []
mechs = []
total_size = 0
for i,l in enumerate(letters):
A, x0, node_type, start_theta, end_theta, tr = results[l][0]
alpha = alphas[l]
R = np.array([[np.cos(alpha), -np.sin(alpha)],[np.sin(alpha), np.cos(alpha)]]).squeeze()
transformed_curve = (R@results[l][-1].T).T
s = target_height/letter_heights[l]
scaling.append(s)
if i>0:
trans = [translations[-1][0] + letter_widths[letters[i-1]]/2 * scaling[i-1] + letter_widths[l]/2 * s + spacing , 0]
else:
trans = [letter_widths[l]/2 * s ,0]
translations.append(trans)
transformed_curves.append(s*(transformed_curve - letter_centers[l]) + trans)
mechs.append([A,s*((R@x0.T).T - letter_centers[l]) + trans,node_type,start_theta+alpha,end_theta+alpha])
total_size += A.shape[0]
A_all = np.zeros((total_size,total_size))
x0_all = np.zeros((total_size,2))
node_type_all = np.zeros((total_size,1))
current_count = 0
sols = []
highlights = []
zs = []
for i,m in enumerate(mechs):
A, x0, node_type, start_theta, end_theta = m
A_all[current_count:current_count+A.shape[0],current_count:current_count+A.shape[0]] = A
# x0_all[current_count:current_count+A.shape[0]] = x0
node_type_all[current_count:current_count+A.shape[0]] = node_type
if i ==0:
highlights.append(A.shape[0]-1)
else:
highlights.append(A.shape[0]+highlights[-1])
sol = solve_rev_vectorized_batch_CPU(A[None],x0[None],node_type[None],np.linspace(start_theta,end_theta,100))[0]
sols.append(sol.transpose(1,0,2))
x0_all[current_count:current_count+A.shape[0]] = sol[:,0,:]
current_count += A.shape[0]
z = zs_[letters[i]]
zs.append(z + zs[-1].max() + 1 if i>0 else z)
sols = np.concatenate(sols,axis=1)
zs = np.concatenate(zs)
uuid_ = str(uuid.uuid4())
create_3d_html(A_all, x0_all, node_type_all, zs, np.concatenate([sols.transpose(1,0,2),sols.transpose(1,0,2)[:,::-1,:]],1), template_path = f'./static/animation.html', save_path=f'./static/{uuid_}.html', highlights=highlights)
return gr.HTML(f'<iframe width="100%" height="800px" src="file=static/{uuid_}.html"></iframe>',label="3D Plot",elem_classes="plot3d")
gr.set_static_paths(paths=[Path(f'./{args.static_folder}')])
with gr.Blocks() as block:
with gr.Row():
with gr.Column():
text = gr.Textbox(label="Enter a word (spaces will be ignored)", value='DECODE')
btn = gr.Button(value="Create Mechanism", variant="primary")
plot_3d = gr.HTML('<iframe width="100%" height="800px" src="file=static/filler.html"></iframe>',label="3D Plot",elem_classes="plot3d")
event1 = btn.click(create_mech, inputs=[text], outputs=[plot_3d])
block.launch()
|