Spaces:
Running
on
A10G
Running
on
A10G
import cv2 | |
import numpy as np | |
from point_cloud_generator import PointCloudGenerator | |
# pcd_generator = PointCloudGenerator() | |
def resize(image): | |
""" | |
resize the input nd array | |
""" | |
h, w = image.shape[:2] | |
if h > w: | |
return cv2.resize(image, (480, 640)) | |
else: | |
return cv2.resize(image, (640, 480)) | |
def get_masked_depth(depth_map, mask): | |
masked_depth_map = depth_map*mask | |
pixel_depth_vals = masked_depth_map[masked_depth_map>0] | |
mean_depth = np.mean(pixel_depth_vals) | |
return masked_depth_map, 1-mean_depth | |
def draw_depth_info(image, depth_map, objects_data): | |
image = image.copy() | |
# object data -> [cls_id, cls_name, cls_center, cls_mask, cls_clr] | |
for data in objects_data: | |
center = data[2] | |
mask = data[3] | |
_, depth = get_masked_depth(depth_map, mask) | |
cv2.rectangle(image, (center[0]-15, center[1]-15), (center[0]+(len(str(round(depth*10, 2))+'m')*12), center[1]+15), data[4], -1) | |
cv2.putText(image, str(round(depth*10, 2))+'m', (center[0]-5, center[1]+5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2) | |
return image | |
def generate_obj_pcd(depth_map, objects_data): | |
objs_pcd = [] | |
pcd_generator = PointCloudGenerator() | |
for data in objects_data: | |
mask = data[3] | |
cls_clr = data[4] | |
masked_depth = depth_map*mask | |
# generating point cloud using masked depth | |
pcd = pcd_generator.generate_point_cloud(masked_depth) | |
objs_pcd.append((pcd, cls_clr)) | |
return objs_pcd | |