shrutikaP8497 commited on
Commit
a01735b
·
verified ·
1 Parent(s): 81917a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -44
app.py CHANGED
@@ -3,32 +3,22 @@ import gradio as gr
3
  import requests
4
  import inspect
5
  import pandas as pd
 
6
 
7
  # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
  """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
  and displays the results.
26
  """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
@@ -38,65 +28,59 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
- try:
43
- agent = BasicAgent()
44
- except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
- return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
  print(agent_code)
50
 
51
- # 2. Fetch Questions
52
  print(f"Fetching questions from: {questions_url}")
53
  try:
54
  response = requests.get(questions_url, timeout=15)
55
  response.raise_for_status()
56
  questions_data = response.json()
57
  if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
  print(f"Fetched {len(questions_data)} questions.")
61
  except requests.exceptions.RequestException as e:
62
  print(f"Error fetching questions: {e}")
63
  return f"Error fetching questions: {e}", None
64
  except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
  print(f"An unexpected error occurred fetching questions: {e}")
70
  return f"An unexpected error occurred fetching questions: {e}", None
71
 
72
- # 3. Run your Agent
73
  results_log = []
74
  answers_payload = []
75
  print(f"Running agent on {len(questions_data)} questions...")
76
  for item in questions_data:
77
  task_id = item.get("task_id")
78
  question_text = item.get("question")
 
79
  if not task_id or question_text is None:
80
  print(f"Skipping item with missing task_id or question: {item}")
81
  continue
82
  try:
83
- submitted_answer = agent(question_text)
 
 
 
 
84
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
 
90
  if not answers_payload:
91
  print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
  print(status_update)
98
 
99
- # 5. Submit
100
  print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
  try:
102
  response = requests.post(submit_url, json=submission_data, timeout=60)
@@ -146,11 +130,9 @@ with gr.Blocks() as demo:
146
  gr.Markdown(
147
  """
148
  **Instructions:**
149
-
150
  1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
  2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
  3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
  ---
155
  **Disclaimers:**
156
  Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
@@ -163,7 +145,6 @@ with gr.Blocks() as demo:
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
 
165
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
  run_button.click(
@@ -172,10 +153,9 @@ with gr.Blocks() as demo:
172
  )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
  print(f"✅ SPACE_HOST found: {space_host_startup}")
@@ -183,14 +163,14 @@ if __name__ == "__main__":
183
  else:
184
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
 
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"✅ SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
  else:
191
  print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
 
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
 
195
  print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
3
  import requests
4
  import inspect
5
  import pandas as pd
6
+ from agent import run_agent_on_question
7
 
8
  # (Keep Constants as is)
9
  # --- Constants ---
10
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
 
12
+
13
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
 
 
 
 
 
 
 
 
 
 
14
  """
15
+ Fetches all questions, runs your custom agent on them, submits all answers,
16
  and displays the results.
17
  """
18
+ space_id = os.getenv("SPACE_ID")
 
19
 
20
  if profile:
21
+ username = f"{profile.username}"
22
  print(f"User logged in: {username}")
23
  else:
24
  print("User not logged in.")
 
28
  questions_url = f"{api_url}/questions"
29
  submit_url = f"{api_url}/submit"
30
 
 
 
 
 
 
 
 
31
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
32
  print(agent_code)
33
 
 
34
  print(f"Fetching questions from: {questions_url}")
35
  try:
36
  response = requests.get(questions_url, timeout=15)
37
  response.raise_for_status()
38
  questions_data = response.json()
39
  if not questions_data:
40
+ print("Fetched questions list is empty.")
41
+ return "Fetched questions list is empty or invalid format.", None
42
  print(f"Fetched {len(questions_data)} questions.")
43
  except requests.exceptions.RequestException as e:
44
  print(f"Error fetching questions: {e}")
45
  return f"Error fetching questions: {e}", None
46
  except requests.exceptions.JSONDecodeError as e:
47
+ print(f"Error decoding JSON response from questions endpoint: {e}")
48
+ print(f"Response text: {response.text[:500]}")
49
+ return f"Error decoding server response for questions: {e}", None
50
  except Exception as e:
51
  print(f"An unexpected error occurred fetching questions: {e}")
52
  return f"An unexpected error occurred fetching questions: {e}", None
53
 
 
54
  results_log = []
55
  answers_payload = []
56
  print(f"Running agent on {len(questions_data)} questions...")
57
  for item in questions_data:
58
  task_id = item.get("task_id")
59
  question_text = item.get("question")
60
+ file_name = item.get("file_name", None)
61
  if not task_id or question_text is None:
62
  print(f"Skipping item with missing task_id or question: {item}")
63
  continue
64
  try:
65
+ submitted_answer = run_agent_on_question({
66
+ "task_id": task_id,
67
+ "question": question_text,
68
+ "file_name": file_name
69
+ })
70
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
71
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
72
  except Exception as e:
73
+ print(f"Error running agent on task {task_id}: {e}")
74
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
75
 
76
  if not answers_payload:
77
  print("Agent did not produce any answers to submit.")
78
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
79
 
 
80
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
81
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
82
  print(status_update)
83
 
 
84
  print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
85
  try:
86
  response = requests.post(submit_url, json=submission_data, timeout=60)
 
130
  gr.Markdown(
131
  """
132
  **Instructions:**
 
133
  1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
134
  2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
135
  3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
 
136
  ---
137
  **Disclaimers:**
138
  Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
 
145
  run_button = gr.Button("Run Evaluation & Submit All Answers")
146
 
147
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
148
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
149
 
150
  run_button.click(
 
153
  )
154
 
155
  if __name__ == "__main__":
156
+ print("\n" + "-" * 30 + " App Starting " + "-" * 30)
 
157
  space_host_startup = os.getenv("SPACE_HOST")
158
+ space_id_startup = os.getenv("SPACE_ID")
159
 
160
  if space_host_startup:
161
  print(f"✅ SPACE_HOST found: {space_host_startup}")
 
163
  else:
164
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
165
 
166
+ if space_id_startup:
167
  print(f"✅ SPACE_ID found: {space_id_startup}")
168
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
169
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
170
  else:
171
  print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
172
 
173
+ print("-" * (60 + len(" App Starting ")) + "\n")
174
 
175
  print("Launching Gradio Interface for Basic Agent Evaluation...")
176
+ demo.launch(debug=True, share=False)