Update app.py
Browse files
app.py
CHANGED
@@ -3,32 +3,22 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
6 |
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
class BasicAgent:
|
14 |
-
def __init__(self):
|
15 |
-
print("BasicAgent initialized.")
|
16 |
-
def __call__(self, question: str) -> str:
|
17 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
fixed_answer = "This is a default answer."
|
19 |
-
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
-
return fixed_answer
|
21 |
-
|
22 |
-
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
24 |
-
Fetches all questions, runs
|
25 |
and displays the results.
|
26 |
"""
|
27 |
-
|
28 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
29 |
|
30 |
if profile:
|
31 |
-
username= f"{profile.username}"
|
32 |
print(f"User logged in: {username}")
|
33 |
else:
|
34 |
print("User not logged in.")
|
@@ -38,65 +28,59 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
38 |
questions_url = f"{api_url}/questions"
|
39 |
submit_url = f"{api_url}/submit"
|
40 |
|
41 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
-
try:
|
43 |
-
agent = BasicAgent()
|
44 |
-
except Exception as e:
|
45 |
-
print(f"Error instantiating agent: {e}")
|
46 |
-
return f"Error initializing agent: {e}", None
|
47 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
48 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
print(agent_code)
|
50 |
|
51 |
-
# 2. Fetch Questions
|
52 |
print(f"Fetching questions from: {questions_url}")
|
53 |
try:
|
54 |
response = requests.get(questions_url, timeout=15)
|
55 |
response.raise_for_status()
|
56 |
questions_data = response.json()
|
57 |
if not questions_data:
|
58 |
-
|
59 |
-
|
60 |
print(f"Fetched {len(questions_data)} questions.")
|
61 |
except requests.exceptions.RequestException as e:
|
62 |
print(f"Error fetching questions: {e}")
|
63 |
return f"Error fetching questions: {e}", None
|
64 |
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
except Exception as e:
|
69 |
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
|
72 |
-
# 3. Run your Agent
|
73 |
results_log = []
|
74 |
answers_payload = []
|
75 |
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
for item in questions_data:
|
77 |
task_id = item.get("task_id")
|
78 |
question_text = item.get("question")
|
|
|
79 |
if not task_id or question_text is None:
|
80 |
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
continue
|
82 |
try:
|
83 |
-
submitted_answer =
|
|
|
|
|
|
|
|
|
84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
except Exception as e:
|
87 |
-
|
88 |
-
|
89 |
|
90 |
if not answers_payload:
|
91 |
print("Agent did not produce any answers to submit.")
|
92 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
|
94 |
-
# 4. Prepare Submission
|
95 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
96 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
print(status_update)
|
98 |
|
99 |
-
# 5. Submit
|
100 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
try:
|
102 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
@@ -146,11 +130,9 @@ with gr.Blocks() as demo:
|
|
146 |
gr.Markdown(
|
147 |
"""
|
148 |
**Instructions:**
|
149 |
-
|
150 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
151 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
152 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
-
|
154 |
---
|
155 |
**Disclaimers:**
|
156 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
@@ -163,7 +145,6 @@ with gr.Blocks() as demo:
|
|
163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
|
165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
|
169 |
run_button.click(
|
@@ -172,10 +153,9 @@ with gr.Blocks() as demo:
|
|
172 |
)
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID")
|
179 |
|
180 |
if space_host_startup:
|
181 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
@@ -183,14 +163,14 @@ if __name__ == "__main__":
|
|
183 |
else:
|
184 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
185 |
|
186 |
-
if space_id_startup:
|
187 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
188 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
190 |
else:
|
191 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
192 |
|
193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
|
195 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
-
demo.launch(debug=True, share=False)
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
+
from agent import run_agent_on_question
|
7 |
|
8 |
# (Keep Constants as is)
|
9 |
# --- Constants ---
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
|
12 |
+
|
13 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
"""
|
15 |
+
Fetches all questions, runs your custom agent on them, submits all answers,
|
16 |
and displays the results.
|
17 |
"""
|
18 |
+
space_id = os.getenv("SPACE_ID")
|
|
|
19 |
|
20 |
if profile:
|
21 |
+
username = f"{profile.username}"
|
22 |
print(f"User logged in: {username}")
|
23 |
else:
|
24 |
print("User not logged in.")
|
|
|
28 |
questions_url = f"{api_url}/questions"
|
29 |
submit_url = f"{api_url}/submit"
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
32 |
print(agent_code)
|
33 |
|
|
|
34 |
print(f"Fetching questions from: {questions_url}")
|
35 |
try:
|
36 |
response = requests.get(questions_url, timeout=15)
|
37 |
response.raise_for_status()
|
38 |
questions_data = response.json()
|
39 |
if not questions_data:
|
40 |
+
print("Fetched questions list is empty.")
|
41 |
+
return "Fetched questions list is empty or invalid format.", None
|
42 |
print(f"Fetched {len(questions_data)} questions.")
|
43 |
except requests.exceptions.RequestException as e:
|
44 |
print(f"Error fetching questions: {e}")
|
45 |
return f"Error fetching questions: {e}", None
|
46 |
except requests.exceptions.JSONDecodeError as e:
|
47 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
48 |
+
print(f"Response text: {response.text[:500]}")
|
49 |
+
return f"Error decoding server response for questions: {e}", None
|
50 |
except Exception as e:
|
51 |
print(f"An unexpected error occurred fetching questions: {e}")
|
52 |
return f"An unexpected error occurred fetching questions: {e}", None
|
53 |
|
|
|
54 |
results_log = []
|
55 |
answers_payload = []
|
56 |
print(f"Running agent on {len(questions_data)} questions...")
|
57 |
for item in questions_data:
|
58 |
task_id = item.get("task_id")
|
59 |
question_text = item.get("question")
|
60 |
+
file_name = item.get("file_name", None)
|
61 |
if not task_id or question_text is None:
|
62 |
print(f"Skipping item with missing task_id or question: {item}")
|
63 |
continue
|
64 |
try:
|
65 |
+
submitted_answer = run_agent_on_question({
|
66 |
+
"task_id": task_id,
|
67 |
+
"question": question_text,
|
68 |
+
"file_name": file_name
|
69 |
+
})
|
70 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
71 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
72 |
except Exception as e:
|
73 |
+
print(f"Error running agent on task {task_id}: {e}")
|
74 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
75 |
|
76 |
if not answers_payload:
|
77 |
print("Agent did not produce any answers to submit.")
|
78 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
79 |
|
|
|
80 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
81 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
82 |
print(status_update)
|
83 |
|
|
|
84 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
85 |
try:
|
86 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
|
130 |
gr.Markdown(
|
131 |
"""
|
132 |
**Instructions:**
|
|
|
133 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
134 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
135 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
136 |
---
|
137 |
**Disclaimers:**
|
138 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
|
|
145 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
146 |
|
147 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
148 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
149 |
|
150 |
run_button.click(
|
|
|
153 |
)
|
154 |
|
155 |
if __name__ == "__main__":
|
156 |
+
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
|
|
|
157 |
space_host_startup = os.getenv("SPACE_HOST")
|
158 |
+
space_id_startup = os.getenv("SPACE_ID")
|
159 |
|
160 |
if space_host_startup:
|
161 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
163 |
else:
|
164 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
165 |
|
166 |
+
if space_id_startup:
|
167 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
168 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
169 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
170 |
else:
|
171 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
172 |
|
173 |
+
print("-" * (60 + len(" App Starting ")) + "\n")
|
174 |
|
175 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
176 |
+
demo.launch(debug=True, share=False)
|