File size: 13,578 Bytes
8718432
 
 
 
 
 
 
 
 
5c8ee13
8718432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import json
import glob
import gradio as gr
from collections import defaultdict

# --- Configuration ---

# Base path where all dataset folders are located
BASE_DATA_DIRECTORY = "./"

# Names of the VLMs and their corresponding keys used in file names
VLM_MODELS = {
    "GPT-4o": "4o",
    "OpenAI o1": "o1",
    "Gemini 2.5 Pro": "gemini",
    "Qwen 2.5 VL": "qwen"
}

# Configuration for each dataset
DATASET_CONFIG = {
    "AITW": {
        "display_name": "AITW",
        "base_dir": os.path.join(BASE_DATA_DIRECTORY, ""), # Base dir is the root for aitw
        "json_patterns": ["aitw_{model_key}_dataset.json", "aitw_{model_key}_dataset1.json"],
        "data_is_nested": True, # The JSON is a dict of episodes, which contain steps
    },
    "Where2Place": {
        "display_name": "Where2Place",
        "base_dir": os.path.join(BASE_DATA_DIRECTORY, "where2place"),
        "json_patterns": ["where2place_mcq_{model_key}.json"],
    },
    "MONDAY": {
        "display_name": "MONDAY",
        "base_dir": os.path.join(BASE_DATA_DIRECTORY, "Monday"),
        "json_patterns": ["monday_mcq_test_{model_key}.json", "monday_mcq_test_unseen_os_{model_key}.json"],
    },
    "RoboVQA": {
        "display_name": "RoboVQA",
        "base_dir": os.path.join(BASE_DATA_DIRECTORY, "robovqa"),
        "json_patterns": ["robovqa_final_dataset_{model_key}.json"],
    }
}

# --- Data Loading and Processing ---

def load_data_for_dataset(dataset_key):
    """
    Loads and structures data for a given dataset from its JSON files.
    
    Returns a dictionary where keys are unique sample IDs and values are
    dictionaries mapping VLM model keys to their specific data for that sample.
    e.g., {'episode_123:step_0': {'4o': {...}, 'o1': {...}}, ...}
    """
    if dataset_key not in DATASET_CONFIG:
        return {}

    config = DATASET_CONFIG[dataset_key]
    unified_data = defaultdict(dict)
    print(f"Loading data for dataset: {dataset_key}")

    for display_name, model_key in VLM_MODELS.items():
        all_entries = []
        for pattern in config["json_patterns"]:
            # Construct the full file path pattern
            full_pattern = os.path.join(config["base_dir"], pattern.format(model_key=model_key))
            # Find all matching files
            json_files = glob.glob(full_pattern)
            
            for file_path in json_files:
                print(f"  - Reading file: {file_path}")
                try:
                    with open(file_path, 'r', encoding='utf-8') as f:
                        data = json.load(f)
                        if isinstance(data, list):
                            all_entries.extend(data)
                        elif isinstance(data, dict):
                            # Handle AITW's nested structure
                            if config.get("data_is_nested"):
                                for episode_id, episode_data in data.items():
                                    for step in episode_data.get("steps", []):
                                        # Add episode context to each step
                                        step_with_context = step.copy()
                                        step_with_context['episode_id'] = episode_id
                                        step_with_context['episode_goal'] = episode_data.get('episode_goal')
                                        all_entries.append(step_with_context)
                except FileNotFoundError:
                    print(f"    - WARNING: File not found: {file_path}")
                except json.JSONDecodeError:
                    print(f"    - WARNING: Could not decode JSON from: {file_path}")

        # Process loaded entries and add to the unified dictionary
        for i, entry in enumerate(all_entries):
            sample_id = None
            if dataset_key == "AITW":
                sample_id = f"{entry.get('episode_id', 'unknown_ep')}:{entry.get('step_id', 'unknown_step')}"
            elif dataset_key == "Where2Place":
                sample_id = f"q_{entry.get('question_id', i)}"
            elif dataset_key == "MONDAY":
                sample_id = f"{entry.get('episode_id', 'unknown_ep')}:{entry.get('step_id', i)}"
            elif dataset_key == "RoboVQA":
                 sample_id = f"{entry.get('episode_id', i)}"
            
            if sample_id:
                unified_data[sample_id][model_key] = entry
    
    # Sort sample IDs for consistent ordering in the dropdown
    sorted_unified_data = {k: unified_data[k] for k in sorted(unified_data.keys())}
    print(f"Finished loading. Found {len(sorted_unified_data)} unique samples.")
    return sorted_unified_data


def format_mcq_options(options, correct_index):
    """Formats MCQ options into a Markdown string, highlighting the correct one."""
    if not isinstance(options, list):
        return "Options not available."
    
    lines = []
    for i, option in enumerate(options):
        # The correct answer in JSON can be 1-based or 0-based index. Check both.
        is_correct = (i == correct_index)
        
        prefix = "✅ **" if is_correct else ""
        suffix = "**" if is_correct else ""
        lines.append(f"- {prefix}{option}{suffix}")
    return "\n".join(lines)


# --- Gradio UI Application ---

with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 95% !important;}") as demo:
    gr.Markdown("# VLM Comparative Benchmark Visualizer")
    gr.Markdown("Select a dataset to load evaluation samples. The interface will display the same question/task evaluated across four different VLMs.")

    # --- State Management ---
    all_data_state = gr.State({})

    # --- UI Components ---
    with gr.Row():
        dataset_selector = gr.Dropdown(
            choices=list(DATASET_CONFIG.keys()),
            label="1. Select a Dataset",
            value="AITW" # Default value
        )
        sample_selector = gr.Dropdown(
            label="2. Select a Sample / Episode Step",
            interactive=True,
            # Choices will be populated dynamically
        )
        
    shared_info_display = gr.Markdown(visible=False) # For goal, common question, etc.
    
    with gr.Row(equal_height=False):
        vlm_outputs = []
        for vlm_display_name, vlm_key in VLM_MODELS.items():
            with gr.Column(scale=1):
                with gr.Blocks():
                    gr.Markdown(f"### {vlm_display_name}")
                    media_display = gr.Image(label="Media", type="filepath", interactive=False, height=400)
                    info_display = gr.Markdown()
                    vlm_outputs.append((media_display, info_display))

    # --- UI Update Logic ---
    
    def handle_dataset_selection(dataset_key):
        """
        Triggered when a new dataset is selected.
        Loads all data for that dataset and populates the sample selector.
        """
        print(f"UI: Dataset selection changed to '{dataset_key}'")
        if not dataset_key:
            return {
                all_data_state: {},
                sample_selector: gr.update(choices=[], value=None),
            }
        
        data = load_data_for_dataset(dataset_key)
        sample_ids = list(data.keys())
        first_sample = sample_ids[0] if sample_ids else None
        
        return {
            all_data_state: data,
            sample_selector: gr.update(choices=sample_ids, value=first_sample, visible=True),
        }

    def handle_sample_selection(dataset_key, sample_id, all_data):
        """
        Triggered when a new sample is selected.
        Updates the four columns with the data for that sample.
        """
        print(f"UI: Sample selection changed to '{sample_id}'")
        if not sample_id or not all_data:
            # Create empty updates for all components if there's no selection
            updates = [gr.update(visible=False)] + [gr.update(value=None, visible=False)] * len(vlm_outputs) * 2
            return dict(zip([shared_info_display] + [item for sublist in vlm_outputs for item in sublist], updates))

        sample_data_for_all_vlms = all_data.get(sample_id, {})
        
        # --- 1. Update Shared Information Display ---
        shared_md_parts = []
        # Use data from the first available VLM to populate shared info
        first_vlm_key = next(iter(VLM_MODELS.values()))
        first_vlm_data = sample_data_for_all_vlms.get(first_vlm_key, {})

        if dataset_key == "AITW":
            shared_md_parts.append(f"**Goal:** `{first_vlm_data.get('episode_goal', 'N/A')}`")
            shared_md_parts.append(f"**Question:** *{first_vlm_data.get('questions', {}).get('question', 'N/A')}*")
        elif dataset_key == "MONDAY":
            shared_md_parts.append(f"**Goal:** `{first_vlm_data.get('goal', 'N/A')}`")
            shared_md_parts.append(f"**OS:** {first_vlm_data.get('os', 'N/A')}")
        elif dataset_key == "RoboVQA":
             shared_md_parts.append(f"**Task Type:** {first_vlm_data.get('task_type', 'N/A')}")
        # Where2Place has its question per-VLM, so no shared info needed.

        shared_info_update = gr.update(value="\n\n".join(shared_md_parts), visible=bool(shared_md_parts))

        # --- 2. Update Each VLM Column ---
        column_updates = []
        config = DATASET_CONFIG[dataset_key]

        for vlm_display_name, vlm_key in VLM_MODELS.items():
            vlm_data = sample_data_for_all_vlms.get(vlm_key)

            if not vlm_data:
                column_updates.extend([gr.update(value=None, visible=True), gr.update(value="*Data not found for this sample.*")])
                continue

            # Find image/media path
            media_path = None
            if dataset_key == "AITW": media_path = vlm_data.get('screenshot_path')
            elif dataset_key == "Where2Place": media_path = vlm_data.get('marked_image_path')
            elif dataset_key == "MONDAY": media_path = vlm_data.get('screenshot_path')
            elif dataset_key == "RoboVQA": media_path = vlm_data.get('media_path')
            
            # Construct absolute path if relative
            absolute_media_path = None
            if media_path:
                # The AITW paths are absolute, others are relative.
                if os.path.isabs(media_path):
                     absolute_media_path = media_path
                else:
                    absolute_media_path = os.path.join(config['base_dir'], media_path)

            # Build the markdown content for the info box
            md_content = []
            if dataset_key == "AITW":
                md_content.append(f"**Action History:**\n```\n{vlm_data.get('action_history', 'None')}\n```")
                options = vlm_data.get('questions', {}).get('options')
                answer_idx = vlm_data.get('questions', {}).get('correct_answer_index')
                md_content.append(format_mcq_options(options, answer_idx))
            
            elif dataset_key == "Where2Place":
                md_content.append(f"**Question:** *{vlm_data.get('question', 'N/A')}*")
                options = vlm_data.get('options')
                answer_idx = vlm_data.get('answer')
                md_content.append(format_mcq_options(options, answer_idx))
            
            elif dataset_key == "MONDAY":
                md_content.append(f"**Question:** *{vlm_data.get('current_question', 'N/A')}*")
                md_content.append(f"**Action History:**\n```\n{vlm_data.get('action_history', 'None')}\n```")
                options = vlm_data.get('options')
                answer_idx = vlm_data.get('answer')
                md_content.append(format_mcq_options(options, answer_idx))
            
            elif dataset_key == "RoboVQA":
                md_content.append(f"**Question:** *{vlm_data.get('question', 'N/A')}*")
                options = vlm_data.get('options')
                answer_idx = vlm_data.get('answer')
                md_content.append(format_mcq_options(options, answer_idx))
            
            image_update = gr.update(value=absolute_media_path if absolute_media_path and os.path.exists(absolute_media_path) else None, visible=True)
            info_update = gr.update(value="\n\n".join(md_content))
            
            column_updates.extend([image_update, info_update])
            
        # Combine all updates into a single dictionary to return
        output_components = [shared_info_display] + [item for sublist in vlm_outputs for item in sublist]
        return dict(zip(output_components, [shared_info_update] + column_updates))


    # --- Event Listeners ---
    
    # When the app loads, trigger the dataset selection change to load the default dataset
    demo.load(
        fn=handle_dataset_selection,
        inputs=[dataset_selector],
        outputs=[all_data_state, sample_selector]
    )

    # When the dataset is changed by the user
    dataset_selector.change(
        fn=handle_dataset_selection,
        inputs=[dataset_selector],
        outputs=[all_data_state, sample_selector]
    )

    # When a new sample is selected, trigger the main display update
    # This also gets triggered automatically after the dataset selection changes the sample dropdown
    sample_selector.change(
        fn=handle_sample_selection,
        inputs=[dataset_selector, sample_selector, all_data_state],
        outputs=[shared_info_display] + [item for sublist in vlm_outputs for item in sublist]
    )


if __name__ == "__main__":
    demo.launch(share=True, debug=True, allowed_paths=["/n/fs/vision-mix/ag9604/visualizer/"])