Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
|
3 |
from diffusers.utils import export_to_video
|
@@ -48,6 +50,8 @@ def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
|
|
48 |
min_slider_h, max_slider_h,
|
49 |
min_slider_w, max_slider_w,
|
50 |
default_h, default_w):
|
|
|
|
|
51 |
orig_w, orig_h = pil_image.size
|
52 |
if orig_w <= 0 or orig_h <= 0:
|
53 |
return default_h, default_w
|
@@ -65,37 +69,22 @@ def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
|
|
65 |
|
66 |
return new_h, new_w
|
67 |
|
68 |
-
def handle_image_upload_for_dims_wan(uploaded_pil_image
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
|
81 |
-
|
82 |
-
def get_duration(input_image, prompt, height, width,
|
83 |
negative_prompt, duration_seconds,
|
84 |
guidance_scale, steps,
|
85 |
seed, randomize_seed,
|
86 |
-
progress
|
87 |
-
if steps > 4 and duration_seconds > 2:
|
88 |
-
return 90
|
89 |
-
elif steps > 4 or duration_seconds > 2:
|
90 |
-
return 75
|
91 |
-
else:
|
92 |
-
return 60
|
93 |
-
|
94 |
-
@spaces.GPU(duration=get_duration)
|
95 |
-
def generate_video(input_image, prompt, height, width,
|
96 |
-
negative_prompt=default_negative_prompt, duration_seconds = 2,
|
97 |
-
guidance_scale = 1, steps = 4,
|
98 |
-
seed = 42, randomize_seed = False,
|
99 |
progress=gr.Progress(track_tqdm=True)):
|
100 |
|
101 |
if input_image is None:
|
@@ -115,7 +104,8 @@ def generate_video(input_image, prompt, height, width,
|
|
115 |
image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
|
116 |
height=target_h, width=target_w, num_frames=num_frames,
|
117 |
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
|
118 |
-
generator=torch.Generator(device="cuda").manual_seed(current_seed)
|
|
|
119 |
).frames[0]
|
120 |
|
121 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
@@ -140,7 +130,7 @@ with gr.Blocks() as demo:
|
|
140 |
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
|
141 |
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
|
142 |
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
|
143 |
-
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale"
|
144 |
|
145 |
generate_button = gr.Button("Generate Video", variant="primary")
|
146 |
with gr.Column():
|
@@ -148,21 +138,16 @@ with gr.Blocks() as demo:
|
|
148 |
|
149 |
input_image_component.upload(
|
150 |
fn=handle_image_upload_for_dims_wan,
|
151 |
-
inputs=[input_image_component
|
152 |
-
outputs=[height_input, width_input]
|
153 |
-
)
|
154 |
-
|
155 |
-
input_image_component.clear(
|
156 |
-
fn=handle_image_upload_for_dims_wan,
|
157 |
-
inputs=[input_image_component, height_input, width_input],
|
158 |
outputs=[height_input, width_input]
|
159 |
)
|
160 |
|
|
|
161 |
ui_inputs = [
|
162 |
input_image_component, prompt_input, height_input, width_input,
|
163 |
negative_prompt_input, duration_seconds_input,
|
164 |
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
|
165 |
]
|
166 |
-
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
|
167 |
|
168 |
-
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
import torch
|
4 |
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
|
5 |
from diffusers.utils import export_to_video
|
|
|
50 |
min_slider_h, max_slider_h,
|
51 |
min_slider_w, max_slider_w,
|
52 |
default_h, default_w):
|
53 |
+
if not isinstance(pil_image, Image.Image):
|
54 |
+
return default_h, default_w
|
55 |
orig_w, orig_h = pil_image.size
|
56 |
if orig_w <= 0 or orig_h <= 0:
|
57 |
return default_h, default_w
|
|
|
69 |
|
70 |
return new_h, new_w
|
71 |
|
72 |
+
def handle_image_upload_for_dims_wan(uploaded_pil_image):
|
73 |
+
new_h, new_w = _calculate_new_dimensions_wan(
|
74 |
+
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
|
75 |
+
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
|
76 |
+
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
|
77 |
+
)
|
78 |
+
return gr.update(value=new_h), gr.update(value=new_w)
|
79 |
+
|
80 |
+
|
81 |
+
# NOTE: The @spaces.GPU decorator is ignored outside of the Hugging Face platform
|
82 |
+
@spaces.GPU
|
83 |
+
def generate_video(input_image, prompt, height, width,
|
|
|
|
|
|
|
84 |
negative_prompt, duration_seconds,
|
85 |
guidance_scale, steps,
|
86 |
seed, randomize_seed,
|
87 |
+
# *** KEY CHANGE 1: Remove the default value for progress ***
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
progress=gr.Progress(track_tqdm=True)):
|
89 |
|
90 |
if input_image is None:
|
|
|
104 |
image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
|
105 |
height=target_h, width=target_w, num_frames=num_frames,
|
106 |
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
|
107 |
+
generator=torch.Generator(device="cuda").manual_seed(current_seed),
|
108 |
+
callback_on_step_end=lambda p, s, l: progress(s / steps) # Use the progress object
|
109 |
).frames[0]
|
110 |
|
111 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
|
|
130 |
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
|
131 |
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
|
132 |
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
|
133 |
+
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale") # Set visible=True for debugging if needed
|
134 |
|
135 |
generate_button = gr.Button("Generate Video", variant="primary")
|
136 |
with gr.Column():
|
|
|
138 |
|
139 |
input_image_component.upload(
|
140 |
fn=handle_image_upload_for_dims_wan,
|
141 |
+
inputs=[input_image_component],
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
outputs=[height_input, width_input]
|
143 |
)
|
144 |
|
145 |
+
# Bundle all the UI components that the generate_video function needs
|
146 |
ui_inputs = [
|
147 |
input_image_component, prompt_input, height_input, width_input,
|
148 |
negative_prompt_input, duration_seconds_input,
|
149 |
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
|
150 |
]
|
|
|
151 |
|
152 |
+
# *** KEY CHANGE 2: Add gr.Progress() to the list of inputs for the click event ***
|
153 |
+
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
|