import streamlit as st from transformers import MarianMTModel, MarianTokenizer # Load pre-trained model and tokenizer model_name = 'Helsinki-NLP/opus-mt-ur-de' model = MarianMTModel.from_pretrained(model_name) tokenizer = MarianTokenizer.from_pretrained(model_name) # Function to translate text def translate_text(text, src_lang, tgt_lang): # Tokenize input text inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) # Translate and decode translated = model.generate(**inputs) translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) return translated_text # Streamlit app layout st.title("Real-Time Urdu to German Translation") st.write("Enter Urdu text below, and the app will translate it into German.") # Input text area for Urdu text input_text = st.text_area("Urdu Text", "", height=200) # Translate when the button is pressed if st.button("Translate"): if input_text: # Translate the text translated_text = translate_text(input_text, "ur", "de") st.subheader("Translated German Text:") st.write(translated_text) else: st.write("Please enter some Urdu text to translate.")