Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,111 +1,34 @@
|
|
1 |
import streamlit as st
|
2 |
-
import speech_recognition as sr
|
3 |
from transformers import MarianMTModel, MarianTokenizer
|
4 |
-
from gtts import gTTS
|
5 |
-
from io import BytesIO
|
6 |
-
import queue
|
7 |
-
import threading
|
8 |
-
import pyaudio
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
model = MarianMTModel.from_pretrained(model_name)
|
15 |
-
return tokenizer, model
|
16 |
-
except Exception as e:
|
17 |
-
st.error(f"Failed to load model for {source_lang} to {target_lang}. Ensure the language pair is supported. Error: {e}")
|
18 |
-
return None, None
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
24 |
-
outputs = model.generate(**inputs)
|
25 |
-
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
26 |
-
return translated_text
|
27 |
-
|
28 |
-
def text_to_audio(text, lang):
|
29 |
-
tts = gTTS(text=text, lang=lang)
|
30 |
-
audio_file = BytesIO()
|
31 |
-
tts.write_to_fp(audio_file)
|
32 |
-
audio_file.seek(0)
|
33 |
-
return audio_file
|
34 |
-
|
35 |
-
def recognize_speech_live(q):
|
36 |
-
recognizer = sr.Recognizer()
|
37 |
-
mic = sr.Microphone()
|
38 |
-
|
39 |
-
with mic as source:
|
40 |
-
recognizer.adjust_for_ambient_noise(source)
|
41 |
-
st.info("Start speaking...")
|
42 |
-
while True:
|
43 |
-
try:
|
44 |
-
audio_data = recognizer.listen(source)
|
45 |
-
text = recognizer.recognize_google(audio_data)
|
46 |
-
q.put(text)
|
47 |
-
except sr.UnknownValueError:
|
48 |
-
q.put("[Unintelligible]")
|
49 |
-
except Exception as e:
|
50 |
-
st.error(f"Error during speech recognition: {e}")
|
51 |
-
break
|
52 |
-
|
53 |
-
def main():
|
54 |
-
st.title("Real-Time Audio Language Translation")
|
55 |
-
st.write("Translate spoken words in real time using open-source models.")
|
56 |
-
|
57 |
-
# Language selection
|
58 |
-
languages = {
|
59 |
-
"English": "en",
|
60 |
-
"Spanish": "es",
|
61 |
-
"French": "fr",
|
62 |
-
"German": "de",
|
63 |
-
"Italian": "it",
|
64 |
-
"Russian": "ru",
|
65 |
-
"Chinese": "zh",
|
66 |
-
"Japanese": "ja",
|
67 |
-
"Korean": "ko",
|
68 |
-
}
|
69 |
-
|
70 |
-
source_language = st.selectbox("Select source language:", options=list(languages.keys()))
|
71 |
-
target_language = st.selectbox("Select target language:", options=list(languages.keys()))
|
72 |
-
|
73 |
-
if source_language == target_language:
|
74 |
-
st.warning("Source and target languages must be different.")
|
75 |
-
return
|
76 |
-
|
77 |
-
source_lang_code = languages[source_language]
|
78 |
-
target_lang_code = languages[target_language]
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
# Real-time speech recognition
|
86 |
-
q = queue.Queue()
|
87 |
-
transcription_placeholder = st.empty()
|
88 |
-
translation_placeholder = st.empty()
|
89 |
-
audio_placeholder = st.empty()
|
90 |
-
|
91 |
-
if st.button("Start Real-Time Translation"):
|
92 |
-
st.write("Processing...")
|
93 |
-
|
94 |
-
# Start speech recognition in a separate thread
|
95 |
-
threading.Thread(target=recognize_speech_live, args=(q,), daemon=True).start()
|
96 |
-
|
97 |
-
while True:
|
98 |
-
if not q.empty():
|
99 |
-
spoken_text = q.get()
|
100 |
-
transcription_placeholder.text_area("Transcribed Text:", spoken_text, height=100)
|
101 |
-
|
102 |
-
# Translate text
|
103 |
-
translated_text = translate_text(tokenizer, model, spoken_text)
|
104 |
-
translation_placeholder.text_area("Translated Text:", translated_text, height=100)
|
105 |
-
|
106 |
-
# Generate and play translated audio
|
107 |
-
translated_audio = text_to_audio(translated_text, target_lang_code)
|
108 |
-
audio_placeholder.audio(translated_audio, format="audio/mp3")
|
109 |
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import MarianMTModel, MarianTokenizer
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
# Load pre-trained model and tokenizer
|
5 |
+
model_name = 'Helsinki-NLP/opus-mt-ur-de'
|
6 |
+
model = MarianMTModel.from_pretrained(model_name)
|
7 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Function to translate text
|
10 |
+
def translate_text(text, src_lang, tgt_lang):
|
11 |
+
# Tokenize input text
|
12 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Translate and decode
|
15 |
+
translated = model.generate(**inputs)
|
16 |
+
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
|
17 |
+
return translated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Streamlit app layout
|
20 |
+
st.title("Real-Time Urdu to German Translation")
|
21 |
+
st.write("Enter Urdu text below, and the app will translate it into German.")
|
22 |
+
|
23 |
+
# Input text area for Urdu text
|
24 |
+
input_text = st.text_area("Urdu Text", "", height=200)
|
25 |
+
|
26 |
+
# Translate when the button is pressed
|
27 |
+
if st.button("Translate"):
|
28 |
+
if input_text:
|
29 |
+
# Translate the text
|
30 |
+
translated_text = translate_text(input_text, "ur", "de")
|
31 |
+
st.subheader("Translated German Text:")
|
32 |
+
st.write(translated_text)
|
33 |
+
else:
|
34 |
+
st.write("Please enter some Urdu text to translate.")
|