flashcard-app / app.py
adityachivu's picture
migrate to chat agent with flashcard agent
ee0877c
import gradio as gr
from pathlib import Path
import asyncio
import google.generativeai as genai
import os
import logging
from dotenv import load_dotenv
from typing import Optional, Tuple
from flashcard import FlashcardSet
from chat_agent import (
chat_agent,
ChatDeps,
ChatResponse
)
# Load environment variables
load_dotenv()
genai.configure(api_key=os.environ["GEMINI_API_KEY"])
async def process_message(message: dict, history: list, current_flashcards: Optional[FlashcardSet]) -> Tuple[str, list, Optional[FlashcardSet]]:
"""Process uploaded files and chat messages"""
# Get any text provided with the upload as system prompt
user_text = message.get("text", "").strip()
# Create chat dependencies
deps = ChatDeps(
message=user_text,
current_flashcards=current_flashcards
)
# Handle file uploads
if message.get("files"):
for file_path in message["files"]:
if file_path.endswith('.pdf'):
try:
with open(file_path, "rb") as pdf_file:
deps.pdf_data = pdf_file.read()
deps.system_prompt = user_text if user_text else None
# Let chat agent handle the PDF upload
result = await chat_agent.run("Process this PDF upload", deps=deps)
if result.data.should_generate_flashcards:
# Update current flashcards
current_flashcards = result.data.flashcards
history.append([
f"Uploaded: {Path(file_path).name}" +
(f"\nWith instructions: {user_text}" if user_text else ""),
result.data.response
])
return "", history, current_flashcards
except Exception as e:
error_msg = f"Error processing PDF: {str(e)}"
logging.error(error_msg)
history.append([f"Uploaded: {Path(file_path).name}", error_msg])
return "", history, current_flashcards
else:
history.append([f"Uploaded: {Path(file_path).name}", "Please upload a PDF file."])
return "", history, current_flashcards
# Handle text messages
if user_text:
try:
result = await chat_agent.run(user_text, deps=deps)
# Update flashcards if modified
if result.data.should_modify_flashcards:
current_flashcards = result.data.flashcards
history.append([user_text, result.data.response])
return "", history, current_flashcards
except Exception as e:
error_msg = f"Error processing request: {str(e)}"
logging.error(error_msg)
history.append([user_text, error_msg])
return "", history, current_flashcards
history.append(["", "Please upload a PDF file or send a message."])
return "", history, current_flashcards
async def clear_chat():
"""Reset the conversation and clear current flashcards"""
return None, None, None
# Create Gradio interface
with gr.Blocks(title="PDF Flashcard Generator") as demo:
gr.Markdown("""
# πŸ“š PDF Flashcard Generator
Upload a PDF document and get AI-generated flashcards to help you study!
You can provide custom instructions along with your PDF upload to guide the flashcard generation.
Powered by Google's Gemini AI
""")
chatbot = gr.Chatbot(
label="Flashcard Generation Chat",
bubble_full_width=False,
show_copy_button=True,
height=600
)
# Session state for flashcards
current_flashcards = gr.State(value=None)
with gr.Row():
chat_input = gr.MultimodalTextbox(
label="Upload PDF or type a message",
placeholder="Drop a PDF file here. You can also add instructions for how the flashcards should be generated...",
file_types=[".pdf", "application/pdf", "pdf"],
show_label=False,
sources=["upload"],
scale=20,
min_width=100
)
clear_btn = gr.Button("πŸ—‘οΈ", variant="secondary", scale=1, min_width=50)
chat_input.submit(
fn=process_message,
inputs=[chat_input, chatbot, current_flashcards],
outputs=[chat_input, chatbot, current_flashcards]
)
clear_btn.click(
fn=clear_chat,
inputs=[],
outputs=[chat_input, chatbot, current_flashcards]
)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860
)