Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,10 @@ import os
|
|
4 |
import requests
|
5 |
from transformers import pipeline
|
6 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Hugging Face Inference Client
|
9 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
@@ -23,6 +27,7 @@ def analyze_issues(issue_text: str, model_name: str, severity: str = None, progr
|
|
23 |
Returns:
|
24 |
str: The analyzed issue and solution.
|
25 |
"""
|
|
|
26 |
prompt = f"""Issue: {issue_text}
|
27 |
Severity: {severity}
|
28 |
Programming Language: {programming_language}
|
@@ -50,9 +55,12 @@ Please provide a comprehensive resolution in the following format:
|
|
50 |
"""
|
51 |
try:
|
52 |
nlp = pipeline("text-generation", model=model_name, max_length=1000) # Increase max_length
|
|
|
53 |
result = nlp(prompt)
|
|
|
54 |
return result[0]['generated_text']
|
55 |
except Exception as e:
|
|
|
56 |
return f"Error analyzing issue with model {model_name}: {e}"
|
57 |
|
58 |
### Function to find related issues
|
@@ -65,6 +73,7 @@ def find_related_issues(issue_text: str, issues: list) -> list:
|
|
65 |
Returns:
|
66 |
list: The list of related issues.
|
67 |
"""
|
|
|
68 |
issue_embedding = similarity_model.encode(issue_text)
|
69 |
related_issues = []
|
70 |
for issue in issues:
|
@@ -72,6 +81,7 @@ def find_related_issues(issue_text: str, issues: list) -> list:
|
|
72 |
similarity = util.cos_sim(issue_embedding, title_embedding)[0][0]
|
73 |
related_issues.append((issue, similarity))
|
74 |
related_issues = sorted(related_issues, key=lambda x: x[1], reverse=True)
|
|
|
75 |
return related_issues[:3] # Return top 3 most similar issues
|
76 |
|
77 |
### Function to fetch GitHub issues
|
@@ -85,6 +95,7 @@ def fetch_github_issues(github_api_token: str, github_username: str, github_repo
|
|
85 |
Returns:
|
86 |
list: The list of GitHub issues.
|
87 |
"""
|
|
|
88 |
url = f"https://api.github.com/repos/{github_username}/{github_repository}/issues"
|
89 |
headers = {
|
90 |
"Authorization": f"Bearer {github_api_token}",
|
@@ -92,8 +103,11 @@ def fetch_github_issues(github_api_token: str, github_username: str, github_repo
|
|
92 |
}
|
93 |
response = requests.get(url, headers=headers)
|
94 |
if response.status_code == 200:
|
95 |
-
|
|
|
|
|
96 |
else:
|
|
|
97 |
raise Exception(f"Error fetching issues: {response.status_code}")
|
98 |
|
99 |
### Function to handle chat responses
|
@@ -136,12 +150,17 @@ def respond(
|
|
136 |
issues = []
|
137 |
|
138 |
messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
|
141 |
-
if val[0]:
|
142 |
-
messages.append({"role": "user", "content": val[0]})
|
143 |
-
if val[1]:
|
144 |
-
messages.append({"role": "assistant", "content": val[1]})
|
145 |
|
146 |
if command == "/github":
|
147 |
if not github_api_token:
|
@@ -152,6 +171,7 @@ def respond(
|
|
152 |
issue_list = "\n".join([f"{i+1}. {issue['title']}" for i, issue in enumerate(issues)])
|
153 |
yield f"Available GitHub Issues:\n{issue_list}\n\nEnter the issue number to analyze:"
|
154 |
except Exception as e:
|
|
|
155 |
yield f"Error fetching GitHub issues: {e}"
|
156 |
|
157 |
elif command == "/help":
|
@@ -178,6 +198,7 @@ def respond(
|
|
178 |
|
179 |
yield f"Resolution for Issue '{issue['title']}':\n{resolution}\n\nRelated Issues:\n{related_issue_text}"
|
180 |
except Exception as e:
|
|
|
181 |
yield f"Error analyzing issue: {e}"
|
182 |
|
183 |
elif command.startswith("/generate_code"):
|
@@ -189,8 +210,13 @@ def respond(
|
|
189 |
prompt = f"Generate code for the following: {code_description}\nProgramming Language: {programming_language}"
|
190 |
try:
|
191 |
generated_code = analyze_issues(prompt, selected_model) # Reuse analyze_issues for code generation
|
192 |
-
yield f"
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
194 |
yield f"Error generating code: {e}"
|
195 |
|
196 |
elif command.startswith("/explain_concept"):
|
@@ -203,6 +229,7 @@ def respond(
|
|
203 |
explanation = analyze_issues(prompt, selected_model) # Reuse analyze_issues for explanation
|
204 |
yield explanation
|
205 |
except Exception as e:
|
|
|
206 |
yield f"Error explaining concept: {e}"
|
207 |
|
208 |
elif command.startswith("/write_documentation"):
|
@@ -215,6 +242,7 @@ def respond(
|
|
215 |
documentation = analyze_issues(prompt, selected_model)
|
216 |
yield documentation
|
217 |
except Exception as e:
|
|
|
218 |
yield f"Error writing documentation: {e}"
|
219 |
|
220 |
elif command.startswith("/translate_code"):
|
@@ -223,27 +251,42 @@ def respond(
|
|
223 |
yield "Invalid command format. Use: /translate_code [code] to [target language]"
|
224 |
else:
|
225 |
code, target_language = parts
|
226 |
-
prompt = f"Translate the following code to {target_language}:\n
|
227 |
-
|
|
|
|
|
|
|
|
|
228 |
translated_code = analyze_issues(prompt, selected_model)
|
229 |
-
yield f"
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
231 |
yield f"Error translating code: {e}"
|
232 |
|
233 |
else:
|
234 |
messages.append({"role": "user", "content": command})
|
|
|
235 |
|
236 |
response = ""
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
with gr.Blocks() as demo:
|
249 |
with gr.Row():
|
@@ -322,4 +365,4 @@ with gr.Blocks() as demo:
|
|
322 |
)
|
323 |
|
324 |
if __name__ == "__main__":
|
325 |
-
demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860, show_header=False)
|
|
|
4 |
import requests
|
5 |
from transformers import pipeline
|
6 |
from sentence_transformers import SentenceTransformer, util
|
7 |
+
import logging
|
8 |
+
|
9 |
+
# Enable detailed logging
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
|
12 |
# Hugging Face Inference Client
|
13 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
|
|
27 |
Returns:
|
28 |
str: The analyzed issue and solution.
|
29 |
"""
|
30 |
+
logging.info(f"Analyzing issue: {issue_text} with model: {model_name}")
|
31 |
prompt = f"""Issue: {issue_text}
|
32 |
Severity: {severity}
|
33 |
Programming Language: {programming_language}
|
|
|
55 |
"""
|
56 |
try:
|
57 |
nlp = pipeline("text-generation", model=model_name, max_length=1000) # Increase max_length
|
58 |
+
logging.info(f"Pipeline created with model: {model_name}")
|
59 |
result = nlp(prompt)
|
60 |
+
logging.info(f"Model output: {result}")
|
61 |
return result[0]['generated_text']
|
62 |
except Exception as e:
|
63 |
+
logging.error(f"Error analyzing issue with model {model_name}: {e}")
|
64 |
return f"Error analyzing issue with model {model_name}: {e}"
|
65 |
|
66 |
### Function to find related issues
|
|
|
73 |
Returns:
|
74 |
list: The list of related issues.
|
75 |
"""
|
76 |
+
logging.info(f"Finding related issues for: {issue_text}")
|
77 |
issue_embedding = similarity_model.encode(issue_text)
|
78 |
related_issues = []
|
79 |
for issue in issues:
|
|
|
81 |
similarity = util.cos_sim(issue_embedding, title_embedding)[0][0]
|
82 |
related_issues.append((issue, similarity))
|
83 |
related_issues = sorted(related_issues, key=lambda x: x[1], reverse=True)
|
84 |
+
logging.info(f"Found related issues: {related_issues}")
|
85 |
return related_issues[:3] # Return top 3 most similar issues
|
86 |
|
87 |
### Function to fetch GitHub issues
|
|
|
95 |
Returns:
|
96 |
list: The list of GitHub issues.
|
97 |
"""
|
98 |
+
logging.info(f"Fetching GitHub issues for: {github_username}/{github_repository}")
|
99 |
url = f"https://api.github.com/repos/{github_username}/{github_repository}/issues"
|
100 |
headers = {
|
101 |
"Authorization": f"Bearer {github_api_token}",
|
|
|
103 |
}
|
104 |
response = requests.get(url, headers=headers)
|
105 |
if response.status_code == 200:
|
106 |
+
issues = response.json()
|
107 |
+
logging.info(f"Fetched issues: {issues}")
|
108 |
+
return issues
|
109 |
else:
|
110 |
+
logging.error(f"Error fetching issues: {response.status_code}")
|
111 |
raise Exception(f"Error fetching issues: {response.status_code}")
|
112 |
|
113 |
### Function to handle chat responses
|
|
|
150 |
issues = []
|
151 |
|
152 |
messages = [{"role": "system", "content": system_message}]
|
153 |
+
logging.info(f"System message: {system_message}")
|
154 |
+
|
155 |
+
for user_msg, assistant_msg in history:
|
156 |
+
if user_msg:
|
157 |
+
messages.append({"role": "user", "content": user_msg})
|
158 |
+
logging.info(f"User message: {user_msg}")
|
159 |
+
if assistant_msg:
|
160 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
161 |
+
logging.info(f"Assistant message: {assistant_msg}")
|
162 |
|
163 |
+
logging.info(f"Command received: {command}")
|
|
|
|
|
|
|
|
|
164 |
|
165 |
if command == "/github":
|
166 |
if not github_api_token:
|
|
|
171 |
issue_list = "\n".join([f"{i+1}. {issue['title']}" for i, issue in enumerate(issues)])
|
172 |
yield f"Available GitHub Issues:\n{issue_list}\n\nEnter the issue number to analyze:"
|
173 |
except Exception as e:
|
174 |
+
logging.error(f"Error fetching GitHub issues: {e}")
|
175 |
yield f"Error fetching GitHub issues: {e}"
|
176 |
|
177 |
elif command == "/help":
|
|
|
198 |
|
199 |
yield f"Resolution for Issue '{issue['title']}':\n{resolution}\n\nRelated Issues:\n{related_issue_text}"
|
200 |
except Exception as e:
|
201 |
+
logging.error(f"Error analyzing issue: {e}")
|
202 |
yield f"Error analyzing issue: {e}"
|
203 |
|
204 |
elif command.startswith("/generate_code"):
|
|
|
210 |
prompt = f"Generate code for the following: {code_description}\nProgramming Language: {programming_language}"
|
211 |
try:
|
212 |
generated_code = analyze_issues(prompt, selected_model) # Reuse analyze_issues for code generation
|
213 |
+
yield f"
|
214 |
+
|
215 |
+
|
216 |
+
{programming_language}\n{generated_code}\n
|
217 |
+
|
218 |
+
except Exception as e:
|
219 |
+
logging.error(f"Error generating code: {e}")
|
220 |
yield f"Error generating code: {e}"
|
221 |
|
222 |
elif command.startswith("/explain_concept"):
|
|
|
229 |
explanation = analyze_issues(prompt, selected_model) # Reuse analyze_issues for explanation
|
230 |
yield explanation
|
231 |
except Exception as e:
|
232 |
+
logging.error(f"Error explaining concept: {e}")
|
233 |
yield f"Error explaining concept: {e}"
|
234 |
|
235 |
elif command.startswith("/write_documentation"):
|
|
|
242 |
documentation = analyze_issues(prompt, selected_model)
|
243 |
yield documentation
|
244 |
except Exception as e:
|
245 |
+
logging.error(f"Error writing documentation: {e}")
|
246 |
yield f"Error writing documentation: {e}"
|
247 |
|
248 |
elif command.startswith("/translate_code"):
|
|
|
251 |
yield "Invalid command format. Use: /translate_code [code] to [target language]"
|
252 |
else:
|
253 |
code, target_language = parts
|
254 |
+
prompt = f"Translate the following code to {target_language}:\n
|
255 |
+
|
256 |
+
|
257 |
+
\n{code}\n
|
258 |
+
|
259 |
+
try:
|
260 |
translated_code = analyze_issues(prompt, selected_model)
|
261 |
+
yield f"
|
262 |
+
|
263 |
+
|
264 |
+
{target_language}\n{translated_code}\n
|
265 |
+
|
266 |
+
except Exception as e:
|
267 |
+
logging.error(f"Error translating code: {e}")
|
268 |
yield f"Error translating code: {e}"
|
269 |
|
270 |
else:
|
271 |
messages.append({"role": "user", "content": command})
|
272 |
+
logging.info(f"User message: {command}")
|
273 |
|
274 |
response = ""
|
275 |
+
try:
|
276 |
+
for message in client.chat_completion(
|
277 |
+
messages,
|
278 |
+
max_tokens=max_tokens,
|
279 |
+
stream=True,
|
280 |
+
temperature=temperature,
|
281 |
+
top_p=top_p,
|
282 |
+
):
|
283 |
+
logging.info(f"Received message from chat completion: {message}")
|
284 |
+
token = message.choices[0].delta.content
|
285 |
+
response += token
|
286 |
+
yield response
|
287 |
+
except Exception as e:
|
288 |
+
logging.error(f"Error during chat completion: {e}")
|
289 |
+
yield f"An error occurred: {e}"
|
290 |
|
291 |
with gr.Blocks() as demo:
|
292 |
with gr.Row():
|
|
|
365 |
)
|
366 |
|
367 |
if __name__ == "__main__":
|
368 |
+
demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860, show_header=False, debug=True)
|